
Antonio J. Bandera Rubio (UNIVERSITY OF MÁLAGA)
Juan Pedro Bandera Rubio (UNIVERSITY OF MÁLAGA)
Rebeca Marfil Robles (UNIVERSITY OF MÁLAGA)
Adrián Romero-Garcés (UNIVERSITY OF MÁLAGA)
Alberto (need surnames and affiliation)

Version 1
Delivery date: 11.03.2019

Use the table below as an internal changelog. Delete before sub-
mitting the deliverable.

__

Deliverable D25.8

Technical manual

Deliverable D25.8 – Technical manual 2

CONTENTS

CONTENTS .. 2

1 General information .. 4

1.1 Hardware ... 4

1.2 The CGAmed server .. 5

1.3 User access ... 6

2 Setting up the CLARC framework .. 6

2.1 Turning the robot on .. 6

2.2 Turning the robot off .. 6

2.3 Capturing the map of the environment .. 7

2.4 Editing the map of the environment ... 7

2.5 Localizing the robot in the map .. 8

2.6 Setting goal poses for Barthel and Get Up & Go tests 9

2.6.1 Setting goal poses (CLARA robot) ... 9

2.6.2 Setting goal poses (CGAmed) .. 10

2.6.3 Setting the goal pose for the charging station .. 10

2.7 Updating the map in the start.sh script file ... 11

3 Administration facilities in the CGAmed ... 12

3.1 Login in the Administration web ... 12

3.2 Managing the list of goal poses ... 12

3.3 Managing the list of patients .. 13

3.4 Video streaming .. 14

4 Data handling description ... 15

4.1 Overview ... 15

4.2 Data capture and storing ... 16

4.2.1 Barthel test ... 16

4.2.2 Get Up & Go test .. 17

4.2.3 Additional sources of information ... 17

4.3 Automated data processing & analysis .. 17

4.3.1 Answers recognition for the Barthel test ... 17

4.3.2 Gait analysis for the Get Up & Go test ... 17

4.3.3 Behaviour execution: action planning ... 20

4.4 Extracting data from the CGAmed server and the robot 24

Deliverable D25.8 – Technical manual 3

4.5 Privacy issues - how do we handle privacy ... 24

Glossary of Terms

CGA: Comprehensive Geriatric Assessment

ECHORD++: European Clearing House for Open Robotics Development Plus Plus

(E++ for short)

Deliverable D25.8 – Technical manual 4

1 General information

CLARC is a complete framework for robotizing two specific tests that are typically part
of a Comprehensive Geriatric Assessment (CGA) procedure: the Barthel test and the
Get Up & Go test. CLARC consists of two major elements: CLARA, a social robot able
to interact with the patients, and capture and analyze the obtained data; and the CGA-
med, a local server able to store a database with all captured data and to provide the
physicians with the tools for online monitoring and offline editing and supervision.
CLARC provides all hardware items and do not require any specific constraint to be
deployed.

The different components of th CLARC framework are detailed below.

1.1 Hardware

The table below describes the standard hardware in an CLARC framework

Hardware Explanation

CLARA robot The robot is based on a differential driven platform by MetraLabs.
Main components are listed in another table in this Section.

Charging sta-
tion

The robot has a charging station to be able to charge autonomously.
The charging station is powered by standard main supply. In case
of charging the power output is 400 W.

Remote Con-
trol

Portable device connected to the robot that allows the user to inter-
act with the system using large buttons.

Router CLARC works in a local network, in which all the components are
connected to the wifi provided by this router.

CGAmed em-
bedded PC

This PC stores all the information about users, sessions, etc.

The table below describes the optional hardware in an CLARC framework

Hardware Explanation

Remote Con-
trol (XL size)

Portable device connected to the robot that allows the user to inter-
act with the system using large buttons and a small touchscreen.

The table below describes the standard hardware in the CLARA robot

Hardware Explanation

The motors & gear-
boxes

MetraLabs HG4
main control unit

Safety motor controller and power supply, battery charging

Deliverable D25.8 – Technical manual 5

Battery 40 Ahrs

Bumper Stops the robot in case of collision

Safety LIDAR Measures distances to walls for orientation, measures dis-
tances to obstacles to avoid collisions, reduces the velocity of
the robot if it is close to a person

Embedded PC
Shuttle DH170

Linux based PC that runs the CORTEX architecture and Cog-
niDrive

Embedded PC Intel
NUC

Windows based PC for person detection, human motion cap-
ture and speech recognition

Microsoft Kinect2 Sensor for motion detection

Network camera
Edimax IC-3115W
WiFi

IP camera for online supervision

Webcam Logitech
C310 HD Logitech

Webcam for recording the session

Soundkarte USB 2.0
ROCCAT

Converts USB to Microphone

Display 13,3" with
PCAP-Touchpanel

Touchscreen for tactile interaction

Shotgun Micro-
phone

Directional microphone for speech capture

Speakers

1.2 The CGAmed server

The table below describes the webs in an CGAmed station

Web Explanation

Administration
192.168.0.70

The administration web is used to configure

 The positions where the robot is going to perform the
tests

 The list of patients
 The IP address of the camera for online supervision

mounted on CLARA robot (Section 1.1 Hardware)

CGAmed
192.168.0.70/cga-
med

The CGAMed is used to:

 Add new patients.
 Add new sessions.

Deliverable D25.8 – Technical manual 6

 Start/Stop a session.
 Pause/Resume a session.
 Move the robot to a position (from a list of predefined

ones).
 See and compare the results of the tests.

1.3 User access

The table below provides the default user/password data needed to access to the mo-
dules in the system.

Module Access

Linux based PC
(CLARA)

Password: scitos

Windows based PC
(CLARA)

Accessible from the Linux based PC using the Remmina re-
mote desktop app

CGAmed embedded
PC

User / password: isis / grupoisis

CGAmed URL (CGAmed) 192.168.0.70/cgamed user / password:
adminWeb / adminSecure
URL (Administration) 192.168.0.70 user / password:
admin / adminRobot

Note: All CGAmed stations share currently the same IP Address. Contact us if you
need to change this address, as this change implies internal updates on the modu-
les on CORTEX architecture.

2 Setting up the CLARC framework

This Section provides details about how to set up the robot, the server and the envi-
ronment to use the CLARC system.

2.1 Turning the robot on

The CLARA robot is turned on using the key in its right side. When the robot is activa-
ted, the two internal PCs are automatically turned on. The screen of the robot is con-
nected to the Linux PC. Login to this PC using the username: SCITOS Demo user (the
one by default) with password: scitos. Then, connect the Linux PC to the local WiFi
network provided by the router. Finally, start Yakuake application.

The Windows PC can be accessed from the Linux PC using the Remmina application.
A direct access to this application is located in the Desktop of the Linux PC.

2.2 Turning the robot off

1. Power down the Windows PC from the Remmina application.

Deliverable D25.8 – Technical manual 7

2. Power down the Linux PC.

3. Switch off the key.

2.3 Capturing the map of the environment

The first time that the robot is going to be deployed in a new place, it is necessary to
build a map of the environment. This will be addressed using MIRA and the CogniDrive
application from MLAB. Briefly, the following steps have to be followed (please refer to
MetraLabs documentation about use of MIRA and CogniDrive for more detailed
descriptions1).

+ Opening the MIRA mapping application: run the following command in a
shell:

Miracenter SCITOSConfigs:etc/SCITOS-mapping.xml

+ Setting the origin of coordinates: the initial position of the robot will be stored
in MIRA as the origin of coordinates of the environment. It is recommended to
mark this initial position on the floor, because it will be used many times to
localize the robot, as it will be explained later in this manual

+ Recording a map: in the MIRA top menu, click the “Window” menu and then
the “Show view” tag. Select the “Simple Mapper” view. Click on the “Record”
button and move the robot manually around the place to allow MIRA catching
the information to build the map. The robot can be moved by pushing it, using
the keyboard arrows, or the arrows of MIRA application (to do it, you must put
the focus on the arrows section of MIRA by clicking there). The movement of
the robot around the place must to finish at the same position where it started
(the initial position). After that, you can stop the recording by clicking the “Finish”
button of the Simple Mapper.

Note: When the robot is moved to record the map, please, be careful not step in
front of the robot, to avoid your legs to be mapped as obstacles!!

+ Saving the map: the result of the previous step is a map that must be saved to
use it later. You have to save it as a MCF file using the “Save MCF” button in
the “Simple mapper” view.

2.4 Editing the map of the environment

Once the map has been built, you can edit it for erasing noise and adding areas of
NOGO (an area which the robot must no enter). Please refer to MetraLabs documen-
tation about use of MIRA and CogniDrive to edit maps2.

1 https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/MappingIntroduction.html,
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/SimpleMapperPage.html
2 https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/SimpleMapEditorPage.html,
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/MCFReference.html

https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/MCFReference.html
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/MappingIntroduction.html
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/SimpleMapperPage.html
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/SimpleMapEditorPage.html
https://www.mira-project.org/MIRA-doc/toolboxes/MapBuilder/MCFReference.html

Deliverable D25.8 – Technical manual 8

2.5 Localizing the robot in the map

When a new map of the environment is built, it is necessary to localize the robot in that
map as a previous step to define the goal positions for the tests. This step is also
necessary when an error in the localization of the robot is detected. Localization is
achieved using the steps detailed below:

Note: A localization error can occur if the robot is moved by hand by pushing it.
Because of that, it is recommended don’t move the robot by pushing it. It can be
moved using the keyboard or the arrows in the MIRA application.

1. The first step is to turn on MIRA using the previously built map. The easiest way
to do it is making a shell script (.sh file) such as:

#!/bin/bash

cd ~

source .bashrc

miracenter MiraNavigation:etc/SCITOS-application.xml MiraNavigation:etc/MiraNavigation.xml -
v MCFFile=<map_name>.mcf -p 123

Example scripts are provided in the robot, so a new script can be easily gene-
rated just changing the name of the loaded map.

2. When MIRA starts and load the map, we could see the position of the origin of
coordinates (the initial position of the robot in the mapping process) marked with
a big coordinate axes, and the position estimated by MIRA for the robot, marked
with a small coordinate axes (Figure 1).

Figure 1: Detail of the origin of coordinates and robot pose in the MIRA itnterface

Deliverable D25.8 – Technical manual 9

3. The easiest way to localize the robot is to physically place it in the environment
position corresponding to the origin of coordinates, and then, set in MIRA that
the robot is in the origin of coordinates. To do it, first, in the “Text View” of MIRA
look at the “Pose” of the robot odometry. If this pose is different from
(0.0,0.0,0.0), click the Reset Odometry button. After that, click in the “localize”
button and then, in the origin of coordinates of the map to make a correspon-
dence between the axes of the origin of coordinates and the axes of the robot.
Now the robot is localized in the origin of coordinates. After that, it is good to
make the robot spin to improve the localization of the robot in the map. Remem-
ber, for moving the robot you can use the arrows of the keyboard or the arrows
of MIRA application (to do it, you must put the focus on the arrows section of
MIRA by clicking there).

Note: It is important, when you turn on the robot, to always check that the robot is
well localized. You can do it by starting MIRA using the built map and visually check
in the map that the robot is well located with respect to the origin of coordinates.

2.6 Setting goal poses for Barthel and Get Up & Go tests

The first time that the robot is going to be used in a new place, and after the localization
step at 2.1.3, you must select the poses (position and orientation) on the map where
you want that the robot be for doing the tests. You have to store these positions in two
places: in the robot components and in the CGAMed database.

There are three types of goal poses to be defined in the CLARC framework. They are
listed in the Table below. The setting of the base_station pose will be described below.

Goal pose Explanation

getu-
pandgo_test

The position on the room from which the robot captures the Get Up
& Go test (observing how the patient performs the test)

base_sta-
tion

The position from which the robot can autonomously access to the
Charging station

habitacion_x With x ranging from 1 to N, you can define different rooms in the en-
vironment. The robot goes to these positions for performing a Bart-
hel test or introducing a Get Up & Go one.

2.6.1 Setting goal poses (CLARA robot)

1. Create a .txt file named “goalPositions.txt” in the cajasvaciasechord/etc folder
of the Linux based PC. The structure of this file is the following:

getupandgo_test -1.0 0.0 0.0

base_station 0.0 0.0 0.0

habitacion_1 -1.0 0.0 0.0

Deliverable D25.8 – Technical manual 10

habitacion_2 -1.0 0.0 0.0

habitacion_3 -1.0 0.0 0.0

The positions of all goal poses are in the form (X,Y,angle in radians). Please,
use the same labels that in this example (you can adapt the number of rooms
(habitacion_x) to your environment).

2. Start MIRA with your map.
3. Reset the odometry and localize the robot.
4. Move the robot to the desired position using the MIRA arrows or the keyboard.
5. Look at the robot odometry pose in the text view of MIRA, there you have the

X, Y coordinates of the position and also the angle. Be careful, because the
angle in MIRA is in degrees and you have to convert it into radians.

6. Write the positions in the. txt file.

2.6.2 Setting goal poses (CGAmed)

1. To configure the positions of the rooms and the base station in the CGAMed
you need to access to the administration web (see Section below).

It is important to highglight that you do not need to write the getupandgo_test
pose on the CGAmed.

Figure 2: Goal pose definition using the CGAmed

2. Insert in the correct fields the same X, Y and angle values that in the “goalPosi-
tions.txt” file.

2.6.3 Setting the goal pose for the charging station

1. Make sure you have a good map of the environment, which also includes the
charging station.

Deliverable D25.8 – Technical manual 11

2. Start "miracenter SCITOSConfigs:etc/SCITOS-application.xml" and localise the
robot correctly (the localisation accuracy must be fine for teaching the charging
station).

3. Push the robot onto the charging station, and make sure that it is firmly and
centrally on the charging station, and most importantly, make sure that the robot
charges! (Yellow LED on the charging station)

4. Use a 3D view with /maps/static/Map and /robot/frontLaser/Laser visualized,
and make sure you can see the area around the charging station in the 3D view
(i.e. where the laser is).

5. Use the "Station tool" (in the bottom bar of the 3D view) to create a new charging
station (remember which ID you give it. We typically just use 0). Leave all the
parameters (except for the ID) as they are set by default, then press "Teach".

6. You will now have to mark the area around the docking station in the 3D view
using the mouse. Each left-click adds a corner of a polygon. Create a polygon
around the outline of the charging station in the laser, and try to include all static
and characteristic features of the environment that are in the immediate vicinity
of the charging station. E.g. if the charging station is next to a corner, make sure
the polygon includes the corner as well, as this will help the robot localise itself
correctly when docking on.

7. When you are satisfied with the polygon, finish with a right-clíck. The robot will
now start driving backwards and stop four times to record laser templates at
different distances. After that he should tell you that he is finished, but I'm not
sure. Either way, as soon as he stops for good, he is finished, and you can now
dock on to that docking station from the point where the robot is standing right
now (this is called the "base point").

8. The docking station will be saved in a file "stations.xml", which needs to be in
the directory where you start MIRA from. You might have to exchange "SCITOS-
Pilot.xml" for "SCITOS-application.xml" in your startup scripts, as only SCITOS-
application.xml includes the docking stuff.

You can read more about the general process and how to dock on in C++ here:
http://www.mira-project.org/MIRA-doc/domains/navigation/DockingProcess/in-
dex.html

From a procedural point of view, you'll have to drive to the "base point" of the station
first using regular navigation. The robot will have to be located in front of the charging
station roughly the same as when he finished recording the templates. Only then can
you let the DockingProcess dock on to this station. The “base point” is the pose that
must be set as base_station (converting the degrees of the angle into radians) in the
goalPositions.txt file and the CGAmed tool.

2.7 Updating the map in the start.sh script file

The first time that the robot is going to be used in a new place, and after the map of
the environment has been built, the script file in charge of start all the components of
the robot (start.sh) must be updated with the new map so that the robot knows its
position during the sessions.

1. Within the Linux based PC in the CLARA robot, edit the start.sh script, which
is in the “robocomp_clarc/robocomp/components/cajasvaciasechord/” folder.

2. Replace the name of the MCF file in the code line

http://www.mira-project.org/MIRA-doc/domains/navigation/DockingProcess/index.html
http://www.mira-project.org/MIRA-doc/domains/navigation/DockingProcess/index.html

Deliverable D25.8 – Technical manual 12

qdbus org.kde.yakuake /yakuake/sessions org.kde.yakuake.runCommand 'cd ~ && source
.bashrc && mira MiraNavigation:etc/SCITOS-application.xml MiraNavigation:etc/MiraNa-
vigation.xml -v MCFFile=labPhaseTwo.mcf -p 1234'

with the name of your MCF map.

3 Administration facilities in the CGAmed

3.1 Login in the Administration web

When you connect to the URL of the Administration web (http://192.168.0.70), you

need to add user and password for entering on the web. This data are provided in

Section 1.3.

Figure 3: Login screen of the administration web

The administration web runs currently only in Spanish.

3.2 Managing the list of goal poses

Once logged into the Administration web, clicking on the Habitaciones tab you have
access to the list of goal poses (rooms and base_station).

+ Clicking on the symbol you can add new poses. When coordinates and an-
gle are added, you should click on the Añadir habitación tab.

Deliverable D25.8 – Technical manual 13

Figure 4: Goals screen of the administration web

3.3 Managing the list of patients

Once logged into the Administration web, clicking on the Pacientes tab you have ac-
cess to the list of patients.

+ Clicking on the symbol you can add new patients. When all data about the

patient has been added, you should click on the Añadir paciente tab. The sys-

tem won’t allow saving a patient in which there are empty fields, so you have

to fill all of them.

Deliverable D25.8 – Technical manual 14

Figure 5: Patients screen of the administration web

+ Clicking on the square-shaped box inline with the patient’s name on the list, it is
possible to edit the data stored about the patient. Clicking on the Eliminar tab is
also possible to remove her/him from the list.

Figure 6: Patient deletion

3.4 Video streaming

The CGAmed web offers the physician the possibility of monitoring, through video
streaming, the CGA session. This video streaming is provided by a IP camera mounted
on the CLARA robot.

Deliverable D25.8 – Technical manual 15

To configure this camera, once logged into the Administration web, clicking on the
Streaming tab you can update the URL address of the IP camera. If you change the
URL, click on the Actualizar tab for approve the update.

Figure 7: IP camera configuration screen

4 Data handling description

This Section describes how CLARA robot captures data, processes them to provide

meaningful outputs, and shows these data to the user (clinician or technician). It also

describes how data captured by the CLARA robot can be extracted for their evaluation.

The information included in this document is restricted to the pilots at the end of Phase

III of the CLARC-ECHORD++ project.

4.1 Overview

Figure 8 shows how the data is managed within the CLARC framework.

Figure 8: Scheme for handling data within CLARC

Figure 8 shows three major stages on the data capture and analysis flow:

+ Data capture: Within the CLARC framework, all the information about the ses-
sion is captured by the CLARA robot.

+ Data processing: All data captured by CLARA robot are processed in order to
extract relevant information from raw sources. This information is stored in the
cognitive architecture of the robot, and used to extract test results. These re-
sults, including additional data such as the videos recorded during the test, are

Deliverable D25.8 – Technical manual 16

sent to the CGAmed server once each test finishes. Briefly, each session is
encoded in a set of files.

+ Data extraction: The responsible of supervising in situ how the robot drives the
session will be also in charge of updating encrypted versions of all these files in
an internal repository. CLARA incorporates tools to ease this process of extrac-
ting relevant data.

4.2 Data capture and storing

4.2.1 Barthel test

CLARA has three different interfaces which allow her capturing the required informa-
tion to correctly perform the Barthel tests:

+ Voice interface: This interface allows the patient to answer the Barthel test ques-
tions using her/his voice in a natural way. It uses Speech Recognition (SR) tech-
niques to recognize the answer provided by the patient. To do that, the answers
must be included in a grammar used by the SR algorithm. If the patient answers
the questions using words or sentences that are not included in the grammar,
the answers are not recognized. Hence, it is important to note that all dialogue
must be conducted using the Language specified on the CGAmed tool when
the session was scheduled.

The voice is captured using a shotgun directional microphone to filter sound
sources apart from the speaker in front of the robot. However, in noisy environ-
ments, this voice interface still may not work properly.

+ Touch screen interface: This interface allows the patient to answer the questi-
ons of the Barthel test by touching the touch screen in the torso of the robot.
This interface may be difficult to use for some people, specially elderly people,
due to the uncomfortable position in which the arm has to be placed and main-
tained. Besides, the patient needs to get close to the robot to use this interface.
If the patient maintains this position for a while, CLARA stops seeing him/her
and it may stop the session because the patient is lost for it.

Figure 9: Example of interface shown in the touch screen

+ Remote control interface: the remote control (Figure 10) allows the patient to
answer the Barthel questions by pushing its buttons.

Deliverable D25.8 – Technical manual 17

Figure 10: Schematic draw of the Remote Control

4.2.2 Get Up & Go test

To capture data from the Get Up and Go test, the robot uses the Kinect v2 sensor from
Microsoft, which provides the skeleton and joint information of the patient. Kinect sen-
sor works properly up to 4.5 meters of distance.

4.2.3 Additional sources of information

Along with the necessary information required to evaluate the tests, CLARA uses a

webcam to record the patients while they are performing the tests. The video recording

of each test is sent to the CGAMed database just after finishing it. The clinicians can

check these videos through the CGAmed web interface.

4.3 Automated data processing & analysis

4.3.1 Answers recognition for the Barthel test

The user provides answers for the Barthel test using three different interfaces: voice,
the tactile screen mounted on the robot, or the remote control. These interfaces acti-
vate when the user is requested to provide a response, and the first interface regis-
tering an input sets the answer of the user for that question.

The components in charge of these behaviours into the cognitive architecture are cur-
rently working fine, and we don’t expect any change for them in the future.

4.3.2 Gait analysis for the Get Up & Go test

The Get Up & Go test is automatically evaluated by the robot following a parametric
Human Motion Analysis approach, in which the complete gait of the person performing
the test is firstly divided into a set of actions. Then, the algorithm evaluates each action
separately, and it finally combines obtained results to provide an integrated score for
the complete motion. Expert knowledge is used to perform the motion segmentation
and evaluation processes.

Deliverable D25.8 – Technical manual 18

The employed algorithm is able to select the actions in which a motion will be seg-
mented from a library of actions. This approach allows the medical specialist to (i) cre-
ate new motion exercises by selecting different actions from the library; or (ii) auto-
nomously search for particular actions in a perceived motion. In the particular case of
the Get Up & Go test, the complete detected motion will be segmented into these se-
quential actions:

+ Seated
+ Standing up
+ Standing
+ Walking straight
+ Turning
+ Walking straight
+ Seating

Once the gait of the person performing the Get Up & Go test has been recorded, the
analysis algorithm searches for these actions in the gait. For each of the actions, the
starting and ending times are detected following actions order (i.e. the ‘Standing Up’
starting point will be looked forward from the point in which the ‘Seated’ action ends).

Segmented actions are then evaluated separately. Evaluation is based on expert
knowledge: the algorithm detects different clues, defined by physiotherapists, that may
increase the risk of falling, and provide a 0/10 score for the action depending on those
clues. These clues are extracted from different parameters, such as time employed to
perform certain parts of the action, spine angle, number of steps, hip trajectories, etc.

The total elapsed time for the action is also stored. Hence, being C({ai})the set of ac-
tions of the gait (1<i<N, being N the number of actions to be detected in the gait, N =
7 in our case), for each action aia score si, an action starting time tis, and an action
ending time tif, are obtained.

Once individual actions have been evaluated, the total score sT and the motion total
time tT are computed as follows:

where wi are a priori weights also set via the empirical assessment of human experts.

In this situation, all actions contribute to the score and the total time. It is possible to
exclude certain actions from the computation of sT and tT (i.e. the action is detected
but its score is not considered to compute total score, or its elapsed time is not consi-
dered to compute motion total time). In the Get Up & Go use case, the first action -
’Seated’- is excluded from the computation of sT and tT. The rest of actions contribute
uniformly to sT .

Time Up And Go

It is interesting to highlight that the Get up & Go test is usually replaced by a simpler
test, named Time Up And Go. This test is based on the analysis of the same gait, but
it only considers the time employed by the person to execute the motion. The proposed

Deliverable D25.8 – Technical manual 19

algorithm, that evaluates the Get Up & Go test, also computes the motion total time tT,
hence it provides the result of the Time Up And Go test

tT<20 secs → no risk of falling,

tT > 20 secs → risk of falling

Evaluation

The algorithm has been tested in real scenarios, involving senior people with no stabi-
lity issues, and also patients in different conditions from the rehabilitation units of the
Hospital Civil de Málaga. The following tables show the obtained results, where the
Get Up & Go score is provided on a five-point scale: 1 = normal; 2 = very slightly
abnormal; 3 = mildly abnormal; 4 = moderately abnormal; 5 = severely abnormal. A
person with a score of 3+ is at risk for falling.

Regarding the Get Up & Go score, the results show that for healthy people the algo-
rithm correctly provided a ‘no risk of falling’ result for all performers (scores 1 or 2). On
the other hand, for the patients there were only one case (patient ID #1) in which the
system should have detected a certain risk of falling but it doesn’t. The results for the
Time Up And Go test (motion total time), on the other hand, were accurate for all per-
formances.

Analysis of the results and further improvement actions

Results show that the proposed HMA system is able to correctly evaluate human mo-
tion. The system requires the complete gait to be perceived before evaluating it, but
once the gait is captured the analytic nature of the algorithm allows producing fast
responses. The algorithm is autonomous and it does not impose any constraints on

Deliverable D25.8 – Technical manual 20

the performer nor the environment. Experiments have involved successful autonomous
evaluation of human gait in the Get Up & Go test.

The splitting approach seems correct to evaluate human motion. The use of modular
actions to represent a complete motion facilitates generalization and adaptability for
different scenarios. Encoding these actions requires expert knowledge to manually
tune their conditions and evaluation functions. While this is a drawback if this know-
ledge is difficult to encode, it also offers a high degree of control over the evaluation
criteria.

The proposal, based on sequential detection, is not robust against errors that affect
one of the actions: if an action is not correctly detected, it can invalidate the complete
gait analysis. That’s not a drawback, but a positive feature, for the considered use
case, where the system has to provide a robust score for a clinical test. However, this
issue should be addressed if the algorithm has to be adapted for more general activity
recognition and evaluation scenarios.

Regarding the evaluation system, further expert assessment may modify evaluation
criteria: for the Get Up & Go test, the total score for the gait is obtained by averaging
action scores. But a very low value in a particular action may indicate a high risk of
falling, even if the rest of the gait scores are good. Result tables mark the minimum
action score of each gait, showing that some of them are far below the averaged, total
score. A non-averaged evaluation, based on different weights or even discriminant
thresholds, will most probably better suit this test. More evaluations of gaits of frail
elderly people, assessed by clinicians, will be conducted in the CLARC project, to de-
termine which actions should trigger an alert of falling risk, regardless of the rest of the
gait.

Experiments involving patients have revealed so far that the proposed HMA system is
able to provide robust, coherent and accurate results for the Time Up & Go test. How-
ever, the current ability of the system to evaluate the Get Up & Go test can be descri-
bed as a limited success. While results are promising and mostly coherent with the
ones provided by a human expert, it seems clear that any gait classified as 'abnormal'
should be reviewed by a physiotherapist. On the other hand, all performances classi-
fied by the system as 'normal' (i.e. the ones achieving 1, the highest score) can reliably
be associated to a person with no particular risk of falling. Hence, the current imple-
mentation of the system can be considered an interesting tool for screening and moni-
toring. It may not be precise enough so as to autonomously provide a definitive score
for a medical test, but it can provide a rough diagnostic. In the Get Up & Go test, it
allows discarding some performers as having a risk of falling, or alert an expert super-
visor if any issue is detected in the gait.

4.3.3 Behaviour execution: action planning

This section describes how the data collected for the planning system during the tests
is processed for three purposes: to control and monitor the execution of the entire sys-
tem, to generate information of the execution of the tests for the clinicians, and to ge-
nerate information of the planning system itself for the technicians.

The planning system PELEA is depicted in the Figure 11.

Deliverable D25.8 – Technical manual 21

Figure 11: Schematic view of the PELEA framework

When the clinician selects the test(s) to be performed, the current state of the robot
and of the environment are recovered by PELEA from the Inner World. The Inner World
is represented by a graph in which the main concepts of the environment and the robot
are represented (e.g., the robot has the level of battery high, the patient has answered
a question). Once PELEA recovers this external information from the Inner World, it
sends it to the Execution module, which in turn redirects it to the LowToHigh (L2H)
module. This module transforms the received external information into high-level pre-
dicates which joint to the internal predicates, creating a high-level state, which is sent
back to Execution. This complete high-level state is sent to Monitoring to check if it is
compatible with the expected state of the world. If it is the first plan or if the previous
plan is not valid anymore (e.g., it detects the patient has not answered a question or
the patient is not facing the robot), Monitoring retrieves a plan from Decision Support,
which encapsulates a high-level planner. This plan is stored by Monitoring, which re-
turns the next action to Execution module. If, in contrast, the actual state of the world
is compatible with the expected one, then Monitoring just returns the next action of the
previously planned plan. Then, Execution module transforms this high-level action into
a set of low-level actions with the help of HighToLow (H2L), and inserts them into the
Inner World. Other compoNets scanning the Inner World will notice the changes intro-
duced by PELEA and act consequently. Then, PELEA checks the Inner World for re-
levant changes until it notices the execution is finished (whether it has finished correctly
or it has been interrupted). After that, it retrieves again the external information needed
to complete the expected state and the cycle starts again. In this scheme, the Execut-
ion module has full control of the execution, timing the maximum duration of an action,
pauses, etc. to control the pace of the social interaction with the patients.

Note that during the previous execution, PELEA generates two kinds of information.
The first type of information refers to the performance of the test by the patient, and
the second is obtained to generate statistics on the operation of the planning system
itself. The first type of information is sent by PELEA to the CGAMed database, while
the second type is stored in the robot. In the following paragraphs, we describe these
two types of information.

Information generated by the planning system for the CGAMed

This information refers to the performance of the test by the patient. In particular,
PELEA collects the following information:

Deliverable D25.8 – Technical manual 22

+ Patient’s answers. For each question in the Barthel test, PELEA collects if the
question has been answered, and what option has been selected. From this
option PELEA computes the score of each question. The following equation is
used to compute the score of each question in the Barthel test:

+ score=(numberOptions * 5) -(selectedOption * 5)

where numberOptions is the total number of options of the question, and selec-
tedOption is the option selected by the patient. Then, if the question has four
options, the option number one has a score of 15, the option two a score of 10,
the option three a score of 5, and, finally, the option four has a score of 0. Note
that this way of computing the score is the common way in the Barthel test. At
the end of the Barthel test, PELEA computes the total score of the test by adding
the partial scores of each question.

+ Time that the patient takes to answer. PELEA also computes the time required
for the patient to answer each question. This time is measured in seconds, from
the moment in which the planning system sends the action that enables the
system the reception of the response, to the moment in which the planning sys-
tem detects that the response has been received by some mean: audio, screen
or tablet.

+ Video information. PELEA is also responsible for sending the actions to start/fi-
nish the recording of the sessions.

+ Control information. Finally, PELEA also collects control information on the sta-
tus of a particular session, i.e., start/end time of the session, whether the clini-
cian stops/resumes the session, if the robot does not detect the patient, etc.

Once the tests finishes, PELEA sends all this information to the CGAMed database.
Such information is displayed by the CGAMed web server to the clinicians.

Information of the planning system itself

In addition to the previous information, PELEA also generates information on the exe-
cution of the planning system itself. In particular, this information refers to:

+ Number of actions. PELEA collects information on the number of actions requi-
red to perform each tests. From an Automated Planning point of view, this num-
ber refers to the cost of the plan.

+ Starting time and duration of each action. The starting time and the duration for
each action is also stored. The duration is computed from the moment in which
the action is written in the inner world, to the moment in which the planning
system detects in the inner world that the action has been correctly fulfilled.

+ Number of replanning situations. PELEA also collects information on the num-
ber of replanning situations, i.e., on the number of times the high-level planner
is invoked. Each time the perceived situation in the environment is not equal to
the desired situation, PELEA replans.

+ Duration of the total plan. The duration of the total plan required to perform each
of the tests.

+ Log information of the PELEA modules. Finally, the execution traces of the dif-
ferent modules of the planning system (Execution, Decision Support and Moni-
toring) are also stored. It is important to be aware of the fact that the previous
information (number of actions, starting time and duration of each action, num-
ber of replanning situations) is generated by the analysis of these execution
traces as shown in Figure 12.

Deliverable D25.8 – Technical manual 23

Figure 12: Analysis of execution traces in PELEA

For each session, a folder with the name session_YYYY_MM_DD_HH_mm_ss is cre-
ated within the folder output of the planning system. In that folder, the previous infor-
mation is stored. The purpose of all this information is to collect statistics about the
execution of the planning system. Such statistics are analyzed by technicians in order
to evaluate the performance of the system.

Evaluation

It should be interested to report here whether the planning capabilities of the system
supports and/or affect to the human-robot interaction. The experiments in this section
has been conducted in Seville, Spain, in a retirement home the 7th of November, 2017.
The following table present the statistics collected from PELEA in two different tests,
Barthel and GetUp&Go, in that retirement home.

Test Duration (s.) Cost Replan Planning (s.) Response (ms.)

Barthel 716.5 64.5 102 5.3 5.8 3.3 0.33 0.01 277.7 6.8

GetUp&Go 166.7 9.2 20.0 1.8 2.2 0.7 0.05 0.03 236.1 5.6

The results in the previous table are analyzed across five dimensions: the accumulated
time (seconds) used to solve the test (we label as Duration the column in the table),
the accumulated cost measured as the number of actions in the executed plan (Cost),
the number of times it is necessary to invoke the high-level planner (Replan), the
average time (seconds) spent by the high-level planner to build a plan (Planning), and
the average response time (milliseconds) per action (Response). The previous table
shows the means and standard deviations computed from five different patients for
each domain and test.

Patients interacted with CLARC robot a mean of 716.5 seconds to complete the Barthel
Test and 166.7 seconds (dimension Duration in Table). The standard deviation is 64.5
seconds for the Barthel test, and 9.2 for the GetUp&Go. Thus, we demonstrate that
the planning system is able to manage large social interactions without human inter-
vention. The mean number of actions required to solve the Barthel test is of 102 5.3
and for the GetUp&Go test 20.0 1.8. Therefore , the Barthel test requires at around
five times more actions than the GetUp&Go test. The number of replanning situations

Deliverable D25.8 – Technical manual 24

is of 5.8 3.3 for the Barthel test and 2.2 0.7 for the GetUp&Go. Finally, the mean time
required for the high-level planner to build plans is 0.33 0.01 seconds for the Barthel
test and 0.05 0.03 for the GetUp&Go, and the mean response time is of 277.7 6.8
milliseconds for the Barthel test and 236.1 5.6 for the GetUp&Go. Both times are low
enough to allow a correct patient-robot interaction.

Analysis of the results and further improvement actions

The previous experiments demonstrate that user interaction is fluid even when many
re-planning actions are required due to the high uncertainty of the interaction. How-
ever, more evaluations will be conducted in the CLARC project in order to get a greater
amount of information that allows us to obtain more conclusive results.

4.4 Extracting data from the CGAmed server and the robot

The protocol for capturing the information coming from the Planning system (within
the software architecture CORTEX, driving the CLARA robot) and the CGAmed data-
base, as well as all videos available, consists on the following steps:

1. Within the Linux based PC in the CGAmed server, open a term window and run:

>> backupClarc.sh

This script takes all the information and compress it in three files, which are
saved in the folder backupClarc. These three files are

+ YYYY_MM_DD_HH_mm_ss_PeleaLogs.tar.gz, which contains the informa-
tion of the planning system.

+ YYYY_MM_DD_HH_mm_ss_database.sql.gz, which contains the informa-
tion of the CGAmed database.

+ YYYY_MM_DD_HH_mm_ss_videos.7z, which contains the videos. This en-
crypted file has been compressed using a password
(nBRTj6JuUc6b7ZnGXqLLFqmZ).

Once the files are saved into the aforementioned folder, the script removes the
original files.

2. Go to the folder backupClarc and copy the previous files into a pendrive or an
external hard drive.

4.5 Privacy issues - how do we handle privacy

Personal data are not stored in the robot, but in the CGAmed server. This server is a
computer that controls access via username/password. It is connected only to the robot
through a local network. Hence, only registered users can access the data in CGAmed
server, and they can access it only through physical operation of the CGAmed server.

People extracting data from the CGAmed server and the robot are responsible of gu-

aranteeing the privacy of these data from the moment they copy these data out of the

folder backupClarc.

