

PROJECT FINAL REPORT

Grant Agreement number: 601116 Project acronym: ECHORD⁺⁺ Project title: The European Coordination Hub for Open Robotics Funding Scheme: Large-Scale Integrating Project (IP) Period covered: October 2013 – March 2019

Name of the scientific representative of the project's coordinator¹, Title and Organisation:

Prof. Dr. habil. Alois Knoll Technische Universität München phone: +49 89 289 18104 email: knoll@in.tum.de

Project website address: echord.eu

¹ Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

1 Final publishable summary report
Conficertive summary
1.2 Project context and objectives
1.3 Main results and foregrounds7
1.3.1 Instruments overview
1.3.2 Summary of experiments11
1.3.3 Summary of RIFs15
1.3.4 Summary of PDTIs22
1.4 Impact27
1.4.1 Impact of experiments27
1.4.2 Impact of RIF29
1.4.3 Impact of PDTI
1.5 List of all beneficiaries
2 Use and dissemination of foreground43
SECTION A (Public)45
Section A1: List of scientific publications46
Section A2: List of dissemination activities72
Section A3: Press clippings77
Section A4: Press releases and events100
Section A5: Advertisements100
SECTION B (confidential or public)101
Section B1: List of application for patents, trademarks, registered designs, etc101
Section B2: List of exploitable foreground102
3 Report on societal implications

Table of Figures

Figure 1 - Robotic Innovation Facilities (RIFs) impression
Figure 2 - ECHORD ⁺⁺ impressions
Figure 3 - RIF impression
Figure 4 - CATCH prototype11
Figure 5 - HyQ-REAL prototype12
Figure 6 - Unternehmer TUM14
Figure 7 - ISYBOT15
Figure 8 -RIF Peccioli
Figure 9 - RIF Bristol
Figure 10 - PDTI Phases23
Figure 11 - ARSI prototype25
Figure 12 - SIAR prototype
Figure 13 - CLARC user test, prototype and remote control (right)26
Figure 14 - ASSESSTRONIC prototype27
Figure 15 - RIF user statistics
Figure 16 - Iterative Service Design process
Figure 17 - ASSESSTRONIC business case
Figure 18 - CLARC Savings
Figure 19 - Publications over the ECHORD ⁺⁺ runtime45
Figure 20 - Types of Dissemination activities from partners of Call 1 and Call 272

1 Final publishable summary report

In 10 years, ECHORD (European Clearing House for Open Robotics Development) and its successor ECHORD⁺⁺ (The European Coordination Hub for Open Robotics Development) have pioneered a unique, new approach, bridging the gap between academia and industry to the lasting benefit of European robotics.

1.1 Executive summary

ECHORD introduced a novel instrument to the landscape of European funding: The "experiments" – flexible joint academia-industry projects allowing to tackle the industry's burning technology needs in a non-bureaucratic way. Based on the heritage of ECHORD, on top of the experiments, ECHORD⁺⁺ even introduced two additional instruments, PDTI (Public end-user Driven Technological Innovation) and RIFs (Robotics Innovation Facilities), with the clear mission of bringing robotics technology from the lab to the market.

Probably the most application-oriented EU-funded robotics research project ever attempted, ECHORD⁺⁺ overcame some of the major barriers preventing the boost of robotics technology. This resulted not only in outstanding technology development but also in products that have already reached the market, leading to economic growth and job creation in Europe. In order to be successful, ECHORD⁺⁺ had to go way beyond what in the past could usually be expected from EU-funded research projects. Flexible, agile management structures had to be put in place, being able to quickly overcome challenges the project has encountered on its way. Outreach and dissemination efforts, probably unparalleled for a project of this size, resulted in a high recognition of the project among the relevant target audiences, paving the route to market for the research and development teams and their products. In addition, with its two booster programmes, the Experiment booster and the RIF booster, ECHORD⁺⁺ provided exceptional support to experiment consortia and the competence centres which form the RIF network, facilitating reaching economic sustainability even beyond the runtime of ECHORD⁺⁺.

Apart from its excellence in technology transfer, another major success of the ECHORD⁺⁺ project was its contribution to the emergence of a close-knit community for robotic research in Europe. The ECHORD⁺⁺ network, composed of researchers, engineers, managers and more, having directly participated in the projects as core or extended partners, or taken part in proposal evaluations, Experiment or PDTI reviews, counts several thousands of the best experts in the field in Europe. Actually, the ECHORD⁺⁺ contact list features over four thousand entries. Bringing these people together, lowering the entry barrier into European research for the growth and benefit of the community, providing the substrate over which new, successful, lasting collaborations emerge and grow, arguably constitutes a significant contribution of ECHORD⁺⁺ to robotics research in Europe.

The novel structure of ECHORD⁺⁺ also provided a blueprint for future EU projects – tapping untold potential and application possibilities and defining the future direction of robotics research. In fact, ECHORD⁺⁺ has been recognized by the European Commission as the very first Digital Innovation Hub network in robotics².

² https://ec.europa.eu/digital-single-market/en/digital-innovation-hubs

As a whole, ECHORD⁺⁺ has gathered a wealth of experience, developed structures, systems and best practice standards that can be utilized in myriad areas. Thus, while the project's impact is already immense, it is enduring legacy will continue to shape the robotics of the future for many years to come.

1.2 Project context and objectives

During the last 10 years, there were actually two ECHORD projects: ECHORD with a runtime from 2009 to 2013 and ECHORD⁺⁺ from 2013 to 2019. "The ECHORD project, funded by the European Commission, enabled the bringing of robotics technology from the lab to the market in more than 50 cases³. Within the project we also successfully tested the funding of sub-projects via open calls," is how Günther Oettinger, former European Commissioner for Digital Economy and Society, described the success of the original ECHORD project (2009 – 2013). In 2009, ECHORD manifested itself as somewhat of an exotic animal in the European robotics research landscape. The fundamental ambition of the project consisted in bringing together robotics academia and industry or, in more general terms, technology providers and technology users, in the pursuit of innovation. At the times, within the European research community, Excellence remained the central focal point, innovation a foreign, if not outright base, notion. Placing innovation front and centre was a bold initiative. This was by design the underlying intent: promoting a shift in the academic culture. Stranger and more radical yet, none of the core partners (composing the initial consortium) would perform Research and Technological Development (RTD) work. Instead, this work would be undertaken by (and the majority of the funding passed on to) additional, extended partners, integrated within the consortium over the project's runtime, using a funding scheme now being referred to as Funding for Support of Third Party (FSTP), also called cascade funding. In particular, the work conducted within ECHORD was structured around two complementary constructs, the Experiments Instrument, and the Structured Dialogue Instrument. The former is designed around a set of focused (in time and scope) RTD projects, the Experiments that gave its name to the Instrument.

The success of ECHORD was predicated not only upon its achievements in terms of technology transfer and innovation, although these were substantial, but also and probably more importantly upon the successful experimentation with a new way to pursue innovation: The Experiments Instrument. Following its success in ECHORD, format of this Instrument was broadly propagated through the European research scene, and has been used in a large number of EC projects ever since. The mechanism has in fact come to be an integral part of the Horizon 2020 Work Programme.

Therefore, it is very naturally that the follow-up project ECHORD⁺⁺, received support to build upon the achievements of the original. This is even more true since despite Europe's long tradition of outstanding research and manufacturing in robotics finding common ground between manufacturers and the research community remained challenging. The original ECHORD project was of course able to remedy this fact to a notable extent, however, ample room for further activities remained, especially in defining the future direction of robotics research.

Capitalizing on the original ECHORD's success it was the mission of the follow-up project ECHORD⁺⁺ to promote the interaction between robot manufacturers, researchers and users. Following its motto "from lab to market" the project should not only serve as an incubator to drive innovation by

³ ECHORD funded 51 experiments. ECHORD++ funded 31 experiments besides 6 PTDI and numerous collaborations in the RIF facilities.

facilitating the cooperation between the aforementioned groups, but also focus on the market perspective by supporting the RTD teams involved to create solutions as close to the market as possible in an EU-funded project.

Figure 1 - Robotic Innovation Facilities (RIFs) impression

To achieve these goals in complement to Experiments ECHORD⁺⁺ introduced two additional technological Instruments, the Robotics Innovation Facilities (RIFs) and the Public end-user Driven Technological Innovation (PDTI). The object of these were, at a conceptual level, to explore the efficacy of different setups and formats in pursuing and achieving concrete, substantial impact in robotics innovation. With the Experiments and PDTI, ECHORD⁺⁺ offered research consortia funding to develop robotics technology for real use-cases. The RIFs provided a unique chance to try out new business ideas and make field tests at zero risk. These tools were tailor-made to meet the demand for innovative robotics technologies of the manufacturing industry, mainly Small and Medium Enterprises (SMEs) with small lot sizes and the need for highly flexible solutions, and public bodies, looking for robotics technology at competitive prices for tender processes. A more detailed description of the main instruments of ECHORD⁺⁺ will follow in chapter 1.3.1. The "Structured Dialogue" of the original ECHORD brought together the stakeholders in robotics with a specific goal of analyzing trends, agreeing on goals and establishing co-operations. To pave the route to the market, in ECHORD⁺⁺ the scientific and technical work was accompanied by extensive marketing and outreach activities way surpassing the scope of the "Structured Dialogue", both in effort and impact as will be described later in this document. Formulated in terms of means and ends, ECHORD⁺⁺ strived to:

- create new knowledge through advancing the state of the art in robotics by developing novel technology from which new products may be derived;
- encourage European research institutions, robot manufacturers and end-users to work closely together at an operational level by means of the execution of experiments – with the goal to develop new research excellence and bring technology forward;
- enable different user groups (companies, public institutions, research organisations) to get easy access to state-of the art robotics hardware, software and scientific expertise for know-how transfer by means of providing the infrastructure in the RIFs;
- enable research institutions, robot manufacturers and public bodies to explore new application fields and start research & development-work for markets that would otherwise not be addressed, by means of PDTI activities;

• extract, consolidate and broadcast the actual progress achieved in the different instruments to the community of robot manufacturers and research institutions and beyond by means of continuous monitoring, reporting and public relations.

All these measures served a common purpose: Building up a powerful European robotics community of Robot Manufacturers and Research Institutions that does not waste its resources in fragmentation, but that works together on a sound operational basis of common ground, trust and mutual understanding. The advantage of a combined action plan was seen to be that a "chain of knowledge flow" should be created from concepts originating from research institutions to product development in robot manufacturers, with ECHORD⁺⁺ being the scientific authority establishing contact and bridging the gaps between them and the large number of (potential new) users of robotic technology. In summary, the objectives of ECHORD⁺⁺ were:

- to provide attractive opportunities for coordinated and target-oriented scientific research as well as knowledge transfer in robotics;
- to create a productive collaboration environment for research institutions and robot manufacturers across Europe;
- to advance the key enabling (emerging) technologies in a bi-directional, scientific exchange between research institutions and robot manufacturers;
- to encourage the development of new application domains and to enlarge the community of users;
- to provide the industry with tangible and measurable results in terms of the deployment of new technologies;
- to promote the involvement of end users in the research process;
- to promote the participation of SMEs with no experience in European research projects.

By taking advantage of the huge capital and personnel investment in the infrastructure already provided by the EC and partner TUM for ECHORD, all of these objectives could be implemented at the lowest possible cost – providing the best "value for money" with the lowest overhead for administration.

1.3 Main results and foregrounds

1.3.1 Instruments overview

As introduced above the three core pillars of ECHORD⁺⁺ were the Experiments, the RIFs, and the PDTI Instrument. All three addressed the same objective and thereby gave substance to the project's motto "From Lab to Market:" to extend support to technology providers and technology users, with the aim to provide conditions that facilitate the emergence of robotics innovation. Barriers to successful innovation are numerous and difficult to overcome (for instance the infamous "Valley of Death"⁴), and there exists no pre-made recipe guaranteeing success. Within that context, achievements of the Experiments Instrument developed in ECHORD stood out as very positive. That model was extended within ECHORD⁺⁺ to include additional support towards commercialization. The RIF model, which can be thought of as a pilot Instrument for the Digital Innovation Hub model within the Digitizing European Industry initiative, explored a different setup and scope for innovation, directly providing technical

⁴ S. K. Markham, S. J. Ward, L. Aiman-Smith, and A. I. Kingon, "The valley of death as context for role theory in product innovation," *Journal of Product Innovation Management*, vol. 27, no. 3, pp. 402-417, 2010.

expertise and access to robotics equipment to innovators. The last technical Instrument discussed, PDTI, explored a novel approach to a notoriously challenging innovation process, Pre-Commercial Procurement.

Experiments

The format of the Experiments Instrument remained largely comparable to that developed in ECHORD. Core ECHORD⁺⁺ project partners framed the scope of the RTD work to be pursued in the instrument through the definition of targeted application areas. These target areas are referred to as scenarios, six of which were defined:

- Cognitive tools and workers for cognitive factories
- General purpose robotic co-workers
- Cognitive logistics robots
- Medical robotics
- Agricultural and food robotics
- Urban robotics

In addition, four distinct technical areas or Research Foci or the experiments were defined, namely practical machine cognition, advanced perception and action capabilities, cooperative mobile manipulators, and system architectures, systems, software engineering, processes and tools.

Two open calls were conducted, with a first set of fifteen Experiments joining the project and beginning RTD work in early 2015, and a second group of sixteen in mid-2016. The expected duration of each Experiment was eighteen months, with financial support in the order of \notin 300,000. The Experiments Instrument distinguished itself in a number of key respects. In particular, the emphasis on innovation was pervasive throughout the process, from preferred Experiment consortium composition (including both technology provider and user, with the addition of a system integrator to facilitate technology transfer when relevant) to the development of an exploitation plan by each Experiment consortium.

This has been discussed during Experiments' kickoff events, followed-up through periodic monitoring over the Experiment's lifetime, and evaluated in final Experiments reviews, to the encouraged and facilitated participation to relevant professional fairs. So, visibility was raised for the developed product, up to the implementation of measures for commercialization support, post-Experiment runtime in the form of the Experiment Booster programme, further discussed in a later chapter.

Figure 2 - ECHORD++ impressions

Another distinguishing feature was the nature of the support provided by the core ECHORD⁺⁺ partners to Experiments partners, in terms of breadth, of frequency of exchanges, but also in terms of the

procedural agility necessary to place Experiments in the best position to succeed. In particular, the aforementioned emphasis on innovation implies the delivery of support services extending well beyond the sole provision of financial support. More specifically, services in terms of networking like brokerage days, Instrument-specific and project-wide community events, Public Relations (PR, support including coaching of Experiments partner, definition of PR plan, invitation to high-profile professional fairs, organization of Instrument- or project-wide PR events), support for administrative aspects (in the form of a service desk, accessible to all Experiment partners), and support for commercialization, business planning and development.

The structure of the Experiments Instrument, as detailed in the project's Description of Work, called for frequent interactions between Experiment partners, performing RTD work, and core partners, providing support as discussed above, but also monitoring progress of the Experiment. The monitoring process was organized around two-monthly calls, on which Experimenters reported recent progress, setbacks encountered and corresponding possible deviations. The content of these calls was not limited to technical aspects but also included discussion of PR activities and refinement of the business plan for the developed product. Exchanges were supported by a dedicated online infrastructure, centralizing relevant documents, in particular deliverables, and keeping track of deadlines, milestones, status of Key Performance Indicators (KPIs) and of the general progress of the Experiment. This frequency of monitoring calls was, relative to usual project progress-tracking procedures, high. In practice however, monitoring procedures, and more generally the specifics of the support provided, was adjusted for each Experiment, based on particular needs identified. In other words, we observed tremendous heterogeneity, in the different Experiments funded, in terms of the nature of the work being conducted, the maturity of the technologies involved, and the experience and conversely, needs, of the Experiment consortium partners in different aspects like for instance technical expertise, PR or business development. Adjusting the support provided in accordance has proved a key factor to success, although the implied agility in implementation of project procedures required significant efforts from the core consortium partners overseeing the Instrument.

RIFs

The ECHORD⁺⁺ Robotic Innovation Facilities (RIFs) form a network of Competence Centres (CCs) in robotics. They offer support in the form of access to equipment and expertise in robotics to interested beneficiaries. The network is composed of three different RIFs, located in Bristol (hosted by the Bristol Robotics Laboratory, BRL), in Paris-Saclay (at the Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA), and in Peccioli (at the Scuola superiore Sant'Anna, SSSA). The particular form of the support extended to beneficiaries differed greatly depending on the specifics of the considered collaborations, however the prototypical RIF technical project was conducted over a duration of six weeks, in collaboration between the external beneficiary and RIF personnel. Relative to technical activities in Experiments, the scope here was narrower, and work was generally performed at lower Technology Readiness Levels (TRL). In particular, Experiments were expected to lead to the development of a system beyond laboratory prototype (that is, TRL5 and above). Conversely, the target at the end of the six-week RIF collaboration was a Proof of Concept (PoC, TRL3).

Figure 3 - RIF impression

In contrast to the Experiments Instrument, which built upon the strong foundation laid in the original ECHORD, the RIFs were completely new to ECHORD⁺⁺. To implement this new instrument on a European scale and to attract a wide target-audience for RIF engagements the consortium designed a simple and non-bureaucratic process. In particular, procedures regimenting the work performed in the Instrument were designed to bring the barrier of entry as low as possible: potential beneficiaries

needed only identify which of the three RIFs has the resources (expertise and equipment) to support the desired collaboration, close to no paperwork was required (no more than a few pages describing the technical work foreseen and expected impact), the service was provided free of charge, and Intellectual Property of the foreground developed in the collaboration was left to the beneficiary.

As detailed out later in this report, the RIF concept in ECHORD⁺⁺ provided to be very successful on many levels, not only in terms of technology and business development but also with respect to ecosystem building. As stated by ECHORD⁺⁺ programme officer Cécile Huet the RIFs were "the proof of concept for the idea of developing an ecosystem around competence-centres with testing facilities"⁵.

Public end-user Driven Technological Innovation

The Public end-user Driven Technological Innovation (PDTI) Instrument explored the active involvement of a public end-user in the robotics innovation process. In practice, the Instrument has strong similarities with Pre-Commercial Procurement process widely acknowledged as challenging to enact. However, PDTI allocates a grant to the beneficiaries, following the funding rules of the European Commission and it has a more concentrated focus on co-creation facilitated by very intense coaching of the core consortium partners.

The PDTI process, as implemented in ECHORD⁺⁺, involved the following steps. Initially, a set of relevant application areas, within which robotics technology could be expected to provide tools for innovation, were identified. Core ECHORD⁺⁺ project members then motivated the definition of innovation challenges corresponding to specific technological needs in these application areas by European public bodies. The core consortium issued an open call to reach out to public bodies to collect those challenges. A panel of experts ranked the proposed challenges, the top two being used as a basis for open calls soliciting proposals for robotic solutions by RTD consortia.

Two of originally six areas⁶ identified as application areas in the ECHORD⁺⁺ proposal were selected: the areas of healthcare (specifically, Comprehensive Geriatric Assessment, CGA), and urban robotics (monitoring of sewer networks). For each challenge, three RTD consortia were initially selected. The subsequent steps in the process emulate those involved in a PCP, with three successive and competitive development phases, the first dedicated to solution design, the second to prototype development, the third to the implementation of a pre-commercial solution. The significant differentiating factor of PDTI with respect to typical implementations of PCP consists in the development of involved intermediation processes, between RTD consortia and public bodies, led by

⁵ youtube.com/watch?v=rEWHBhHKoAI

⁶These areas were pre-defined by the core consortium. The challenges specifically submitted by the public bodies are CGA and sewer inspection.

core ECHORD⁺⁺ project partners. Moreover, ECHORD⁺⁺ allocated a grant, because there was no risksharing or co-funding between the public bodies and the RTD consortia. These processes have taken a form comparable to that of the monitoring procedures developed for the Experiments Instrument and present a number of similarities to methods implemented for Public Procurement of Innovation.

1.3.2 Summary of experiments

Throughout its runtime of ECHORD⁺⁺ implemented 31 experiments with the main goal of bridging the gap between the laboratories and the market. The experimenters were given a lot of freedom in shaping the scope of their projects as long as they fit into 5 general application areas and 4 technological areas. A strong emphasis was put on involving both academic and industrial partners in each of the experiments, which led to development of technologies, which answered the actual needs of the market while also pushing the frontiers of science.

ECHORD⁺⁺ recognized the importance of digitalization of the agrifood sector, which currently is one of the main areas of the "Digitising and transforming European industry and services" focus area⁷. Both **MARS** and **SAGA** focused on swarm-based solutions for precision agriculture. The first one developed and successfully deployed two cloud-connected ground robots with precise localization technology and integrated seeding units. The second developed a weed detection system, which can be used by a swarm of drones for precise weed removal. The **GRAPE** project also tackled the problem of targeted intervention in agriculture by developing an autonomous robot with pheromone dispenser for precise plague control.

Figure 4 – CATCH prototype

The other projects in the Agrifood area focused on reducing the strain of repetitive and arduous tasks. **3DSSC** developed a robotic solution for peeling of large cheese blocks. Thanks to a precise 3D sensing it achieved accuracy and waste level similar to human workers. The project generated enough commercial interest to tackle the speed of processing in the next stage. A specialized gripper supporting grafting operation was developed within the **INJEROBOTS** project, while **GARotics** and **CATCH** focused on the tedious task of

harvesting plants. The first one led to development of sensing system capable of detecting 100% of green asparagus and specialized tool successfully harvesting 95% of them whereas the second resulted in a system robustly detecting over 85% of cucumbers in the test trials.

Cognition in tools, workers and logistics was in the focus of several experiments aiming to deliver robotic solutions capable of perceiving, reasoning and interacting with their environment in several areas, e.g. precise manipulation, waste sorting, logistics. The **DEBURR** project developed an autonomous laser deburring system with integrated visual quality assessment of processed parts. Novel tactile sensors facilitated success of two other projects – **PICKIT** and **WIRES**. The first one managed to reduce the cycle time of bin picking tasks by up to 36%. In the second one, the tactile

⁷ https://ec.europa.eu/programmes/horizon2020/en/sites/horizon2020/files/DT_booklet.pdf

gripper combined with and advanced vision system and dedicated gripper, was successfully used to automatize routing of wires in switchboards.

Two of the ECHORD⁺⁺ experiments addressed the topic of waste sorting. The system developed within the **AAWSBE1** experiment applied deep-learning-based vision system to improve efficiency of extracting batteries form waste electrical and electronic equipment by 5%. The **RadioRoSo** team developed a robotic system capable of autonomous sorting of radioactive Magnox swarf.

Using improved cognitive capabilities in logistics applications was in the core of three other ECHORD⁺⁺ experiments – **SAFERUN**, **FASTKIT** and **MAX-ES**. The first one developed a new planning algorithm with variable velocity profiles improving both the performance and smoothness of the AGVs movement while adhering to kinematic and safety constraints. The second developed a novel solution combining mobile robots and cable-driven parallel robots. The resulting system facilitates fast picking and kiting tasks in densely planned, high-bay rack warehouses. Finally, **MAX-ES** addressed tasks of autonomous navigation, safety and docking of a heavy AGV (22 tons). The developed system conforms to the requirements of the industrial partner and is capable of in- and out-door operation in highly demanding environment of aluminium smelter.

Not all of the projects had such a highly focused application area, and instead developed widely applicable tools benefitting from cognitive technologies. **DUALARMWORKER** developed tools and libraries supporting motion planning, automatic programming and collision avoidance for bi-manual assembly tasks. **FlexSight** developed an integrated and cost-efficient smart 3D sensor supporting bin picking, assembly and detection tasks. Finally, **CoCoMaps** released the second version of the Psyclone framework supporting verbal and visual communication between robots and humans.

The third focal area of the ECHORD⁺⁺ experiments, being highly coherent with the Human Factor focus area of the Factories of the Future Roadmap⁸, revolved around robotic co-workers supporting humans in manufacturing tasks. Programming of the robots still requires considerable expertise, lack of which is often one of the reasons of limited adoption of robotic solutions. In order to tackle this issue, **CoHRoS** developed intuitive assisting teaching tools for highly redundant robots. Intuitive programming of robots was also in focus of **DexBuddy**. The project also demonstrated software successfully combining 3D vision, tactile fingers, and force and torque measuring wrist for online motion and grasp planning and force-controlled motion in industrial applications.

Figure 5 - HyQ-REAL prototype

Two of the ECHORD⁺⁺ experiments dealt with quadrupedal robots using series elastic MODUL actuators. Both and HvQ-REAL developed robust robotic solutions capable of assisting humans in difficult terrain. A different approach to safe human-robot collaboration was demonstrated within the SAPARO experiment. A tactile floor covering the whole work cell was developed in order to allow for a fenceless collaboration between human workers and high payload robots. This sensing device was then

⁸ https://www.effra.eu/factories-future-roadmap

complemented with an Augmented Reality system dynamically displaying the safety zones to improve the efficiency of such collaboration even further.

Finally, two of the experiments developed collaborative systems for very targeted and specific applications. An assistant robot supporting human workers in the tire changing process was developed in **TIREBOT**. Test trials showed, that the required effort of workers was reduced by 63%. The **2F** project developed a mobile cobot for the construction yards capable of grout removal and acid cleaning of floors.

The last application area of the ECHORD⁺⁺ experiments, also consistent with the "Digitising and transforming European industry and services", dealt with robotics for healthcare and rehabilitation. Three of the experiments focused on the post-stroke treatment and rehabilitation of the upper limbs. **MOTORE**⁺⁺ developed the first planar rehabilitation robot small enough to be easily carried and used for home exercise. **LINarm**⁺⁺ used variable stiffness actuators to develop a linear movement rehabilitation device. The device included also components for unobtrusive measurement of patients' state, sensor fusion and biofeedback, significantly increasing functionalities of the robot. The low-cost device developed in the **HOMEREHAB** project extends the concept even further and uses 3D manipulator for advanced rehabilitation in home setting. Moreover, it developed a platform for remote monitoring of patients' progress. Similar approach was followed in **KERAAL**, where the humanoid robot is used to guide patients through physical rehabilitations sessions aimed at alleviating lower back pain.

The goal of **LA-ROSES** project was to develop a robotic solution dedicated to laser-assisted keratoplasty – cornea transplantation. A robotic arm is used to position tool responsible for welding of the eye tissue over the patient's eye. The system allows the surgeon to precisely control the trajectory of the tool and supports this task with vision system.

The **EXOTrainer** experiment used available technologies to target a new target group – children affected by Spinal Muscular Atrophy. The prototype gait exoskeleton developed in the project provided walking ability to patients and is currently undergoing clinical trials.

Some of the ECHORD⁺⁺ experiments delivered not only the expected results but also additional, originally unforeseen, highly relevant and exploitable results. Those include the **series elastic actuators** developed as an enabler for the **LINarm**⁺⁺ rehabilitation device and the **navigation and onboard computer module** developed as the control unit in **SAGA**. Such additional, easily marketable solutions will support the experiments in their road to commercialization of the originally planned results.

The Experiments instrument of ECHORD⁺⁺ resulted not only in the technological innovations described above. The process innovation related to organization, implementation as well as monitoring and reviewing of the cascade-funded experiments is not to be overlooked. The Open Call Platform developed in ECHORD & ECHORD⁺⁺ is now used in many European Funded projects. The platform is outstanding with the functionalities it comes with, but also with regard to its excellent documentation: an operational handbook, a virtual testing environment with test protocols to avoid bugs when setting up new calls, a Quality Management handbook with process descriptions and all reference documents.

A methodology for continuous monitoring and regular interactions between the experimenters and moderators assigned by the core consortium was shaped during the first call. Based on the lessons learned, the methodology was further improved during the second call, e.g. by adding a second

moderator and clearly separating the roles of the technical and administrative moderators. Moreover, a KPI-based evaluation framework was formulated leading to increased transparency and efficiency of the progress evaluation and final reviews. This methodology has been successfully implemented in many Horizon2020 projects involving the Financial Support to Thirds Parties such as HORSE, RobMoSys, ESMERA and the Human Brain FET Flagship project. Other projects, where TUM is not directly involved (as a partner or is not in charge of the management of the open calls) started to use the platform as beta users as well.

Finally, a new instrument, further supporting the experiments in their mission of bridging the gap between lab and market was developed and implemented. The concept for the new instrument was driven by realization, that although many of the experiments developed innovative and relevant technological solutions, they still needed the final push to transform those into successful products. The Experiments Booster Programme (EBP) consisted of two complementary segments coaching and incubation programme delivered

by external institutions (e.g. UnternehmerTUM) and consideration for the third tool, TechFounders, accelerator programme bringing together the participant with potential industrial partners.

Participation in EBP required 5-month relocation of the members of the experiment team to Munich and co-participation in the costs of the programme. The reason behind that was to ensure that only highly motivated teams applied for and participated in the programme. Applications from 7 experiments were received, out of which 4 were selected for funding: SAGA, ExoTrainer, LINarm⁺⁺ and MODUL. Each of the selected projects had different expectations and needs, which were addressed via individualized coaching and incubation approaches.

The EBP allowed **Avular**, member of the original **SAGA** experiment, to redefine the strategy of the company, to acquire new investors and to focus on development of a new product – the Curiosity Core based on the onboard computer developed within SAGA.

ANYbotics, a spin-off of ETH Zurich funded to commercialize the results of the **MODUL** experiment, used the additional support to reengineer the series of elastic actuators, increase their robustness and reduce production costs. Similarly, the participants of **LINarm**⁺⁺ developed a more advanced and market ready version of their actuator and shaped business strategy to bring it to the market and thus finance further development of the rehabilitation device.

Finally, **Marsi Bionics**, one of the **EXOTrainer** partners, used the additional support to prepare strategy for entering the German healthcare market, which is crucial to ensuring the commercial success of the project.

1.3.3 Summary of RIFs

Introduction to the RIF Booster Programme

The Robotics Innovation Facilities (RIFs) have received funding from the ECHORD⁺⁺ project to serve as collaborative test beds for exploring how academia can successfully interact with small, medium and large enterprises to drive robotic development and economic growth in Europe. After the runtime of ECHORD⁺⁺ the RIFs are expected to be self-sustainable and establish a collaborative network. In order to support the RIFs through this transition period, ECHORD⁺⁺ has engaged professional business and organizational development consultants with expertise in robotics to work with the RIFs⁹. Besides outlining a development plan for the three RIFs (portfolio of services to be offered, business models and business plan), the consultants provided a deep analysis of the status quo at each of the RIFs and the RIF network as a whole including analysis of hitherto existing RIF collaborations. Therefore, the following section of this report combines summarized insights from the ECHORD⁺⁺ core consortium with the consultants' report. It is notable, though, that as stated by the consultants all three RIFs share the same goals as those presented in the RIF project description, but with differing maturity levels and with a focus on different customer types, based on their distinct business ecosystems. This has resulted in variation in terms of how the RIFs have each prioritized their activities to achieve the formulated goals of the RIF project.

Collaborations at RIF Paris

RIF Paris is operated by CEA List and is integrated within their existing Interactive Robotics Laboratory (IRL), which consists of about 50 researchers. IRL conducts technology research to develop disruptive and radical solutions in the field of robotics.

Figure 7 - ISYBOT

Customers, such as robot developers and qualified end-users, provide fifty percent of the funding for RIF Paris, the majority of them being larger manufacturing companies. Thirtyfive percent of the funding comes from public organizations, including the European Commission (EC), national, and regional bodies. The parent company, CEA List, also supports the robotics lab, providing fifteen percent of the funding. The biggest cost drivers are technology and domain experts. CEA List has a long relationship with French

industry through their network of spin-offs e.g., ORANO (formerly Areva), as well as through their collaboration with technological organizations that are working to improve the competitiveness of French companies, such as CETIM and SYMOP. Interviews with RIF Paris stakeholders and customers identified the RIF skills and assets that they have found to be of particular value, namely, the RIF Paris research expertise and their ability to assist with fast prototyping, in a time effective and interactive way. Furthermore, when discussing the interview results with RIF Paris, the consultants discovered that the RIF operators have implemented a qualification routine that is conducted before engaging

⁹ Namely the Swedish company WIDE Idea Development AB

with customers. This qualification routine has the potential to serve as a model and to provide value for other existing and future innovation hubs, helping them to identify and focus on 'true' customers. These are customers that are ready to implement robotics in their organizations, in terms of having sufficient knowledge and resources, or those that have the capacity to reach this level if they are given reasonable support that can be provided within the available budget.

The outreach activities conducted by RIF Paris rely on personal contacts, through the central marketing function at CEA List and through industry networks, such as CETIM. One of the main benefits of the RIF investment has been the intensification of these outreach activities. A particular challenge for RIF Paris is related to difficulties in reaching out to sectors other than the manufacturing industry, such as healthcare robotics. Another challenge is outreach via digital communication, such as through their webpage and social media. This is because communication channels within CEA List are centrally controlled and are not able to be modified by the RIF itself. During the runtime of the RIF programme within ECHORD⁺⁺, RIF Paris has executed 21 projects, of which ninety percent were in the field of manufacturing. Eleven large enterprises, seven SMEs (including one robot development company), two Research and Technology Organizations (RTOs)/Academic organizations, and one start-up were supported during the three-year period.

It is important to mention that RIF Paris also works in partnership with system integrators. These collaborations are based on the RIF Paris strategy to work at lower Technology Readiness Levels (TRLs). When projects get closer to reaching higher TRLs, RIF Paris hands them over to system integrator partners, who then support the company in transforming their prototype into a commercial application. Notable collaborations of the RIF Paris in the last years were:

- 1 WM88, which is an SME producing prefabricated kits for kitchen and bathrooms, which are distributed in France and the UK. WE88 has approximately 150 employees and delivers around 70,000 kitchen cabinets and around 1000 bathroom cabinets per year. WM88 encountered RIF Paris through their industrial network, as they needed to automate parts of their production line related to packaging. RIF Paris assisted WM88 in understanding how robotics could be used and helped with the development and benchmarking of the first robotic prototype. RIF Paris subsequently introduced WM88 to a system integrator who implemented the robotics in their organisation. The feedback from WM88 is that RIF Paris helped them to identify and realise a radical solution to their needs and demonstrated the commercial benefits of this kind of automation investment.
- 2 Orano (former Areva) processes nuclear materials. The R&D department at Orano actively contributes to the energy and medical radiological research fields, through a back-end business approach that includes modelling, simulation, electronics development, and technology development for robotics. Orano is a spin-off from CEA List and is now a strategic CEA List collaboration partner. In partnership with RIF Paris, Orano develop products that meet the needs of their customers, with a focus on three main areas: Tele-operation for computer-aided robotics, simulations for train operators, and radiation for tolerant electronics. Solutions in these product areas are both developed and prototyped for implementation by RIF Paris. In conclusion, Orano is of the opinion that RIF Paris has a good understanding of their needs and limitations and is highly responsive in meeting their needs. Of particular value to Orano is the research expertise within RIF Paris.

3 **Isybot** is a spin-off from RIF Paris. The CEO is a former employee of the Interactive Robotics Laboratory. Isybot's collaborative robots, or cobots, leverage an actuator technology developed by the IRL that does not require force sensors, making the robots simple, accurate, lightweight, and safe for the operators they assist. Isybot is an example of a spin-off from RIF Paris that has received support through the structured technology transfer process at CEA List. Currently, Isybot is located at RIF Paris, where the facilities are used to conduct continuous R&D.

The financing of the transformation of RIF Paris into an RCC has been secured by the following five European projects:

- ESMERA with the aim of supporting SMEs in the realisation, testing and promotion of novel robotic technologies.
- COVR with the goal of increasing safety for all robots sharing space with humans.
- TERRINET aimed at creating a network to maintain Europe's leadership in Robotics, by focusing on research.
- RIMA a project with 23 partners aiming to establish 13 Digital Innovation Hubs (DIH) on robotics, sharing best practices and providing services to facilitate uptake of Inspection and Maintenance technologies.
- DIH-HERO a network of 16 DIHs, which aims to boost innovation and implementation of robotics in healthcare.

The brand name RIF@Paris-Saclay will be used for the future operation. The RIF processes have been improved to enable better interaction with SMEs and a better understanding of the different needs of each type of SME, for example, end users, technology providers, service providers and system integrators.

RIF Paris have improved their methods and tools for communication with internal and external stakeholders in order to agree upon common values and rules for each project and to ensure that all parties share the same objectives. The internal processes for communication, dissemination of results and marketing within CEA List have been more clearly defined and the cooperation between the different departments has been improved.

Collaborations at RIF Peccioli

RIF Peccioli is operated by the competence centre at Scoula Superiore Sant' Anna (SSSA) and with TechnoDeal, a spin-off from SSSA. RIF Peccioli consists of the Biorobotics laboratory along with indoor and outdoor areas for on-site testing of robotic solutions, but the RIF also cooperates with the other robotic labs at SSSA. TechnoDeal is the driver at RIF Peccioli for identifying spin-offs and start-ups, as well as for cooperation with existing industry and business development projects. A team of young engineers and project leaders at the SSSA competence centre, who work closely with TechnoDeal, supports and administers these activities. RIF Peccioli has no employed researchers in the organisation. Instead, they collaborate in their projects with PhD students, postdoctoral students and researchers from SSSA.

Figure 8 -RIF Peccioli

Thirty-five percent of the revenue for RIF Peccioli comes from private companies. Regional and national bodies contribute with fifteen percent, while fifty percent is provided by EU funding. The main outreach activities are proactive sales activities and networking activities undertaken by TechnoDeal, and joint activities with SSSA to identify possible spinoffs. SSSA's reputable brand means that many companies, both SMEs and large enterprises, approach the University seeking cooperation in

the field of robotics. The discussions with RIF Peccioli customers revealed that the primary value in building international hubs is the international knowledge that they are able to share, rather than providing a direct benefit to the local spin-off or SME.

In summary, RIF Peccioli has hosted around 10 experiments with different consortia, including large enterprises, SMEs and start-ups. Two projects have been executed where single SMEs have approached RIF Peccioli with defined problems to be solved. What stands out at RIF Peccioli is their ability to create spin-offs from their research projects. The spin-offs are not only based on the end results of the research projects, but also on the identification of the potential for commercialization of intelligent problem-solving that occurs during the projects. TechnoDeal, which is mainly financed by the RIF project, has successfully demonstrated the ability to match industry requirements with the research results and competences at SSSA. This has resulted in 10 start-ups since 2015. Notable collaborations of the RIF in Peccioli are listed below:

- **3DNextech** is a spin-off from SSSA that has developed a device designed to reliably finish objects in ABS and cellulose acetate. This device is a by-product of robotic research at SSSA, where the aim was to develop an underwater robot. During the development process of the robot the researchers used a 3D printer to develop the prototype and needed to incorporate a process that would provide a smooth and waterproof finish for the 3D printed object. This process does not exist on the market today and so the researchers developed one to meet their needs. They then realised that this newly developed tool, a specific ABS and cellulose acetate process, could be of great value to other industry sectors that use 3D printing in their manufacturing process, such as eye-glass manufacturing companies, as it offers considerable time-savings. At this stage, the SSSA researchers reached out to RIF Peccioli and received support from TechnoDeal with market analysis, business plan development, and IP creation. TechnoDeal further assisted 3DNextech to apply for and secure financing from a business angel, which enabled the creation of the 3DNextech spin-off company. RIF Peccioli and TechnoDeal are continuing to support the company by helping them to find and apply for additional regional funding.
- 2 KW is an SME in Tuscany that supplies appliances, installations, and services for cold-chain and thermo-stations. Their products are used in the biomedical, scientific research, and industrial sectors. KW knows SSSA and TechnoDeal from an earlier collaboration project undertaken in 2013/2014. Given their positive experiences with this project and the good reputation of SSSA, KW approached them again when they encountered difficulties in meeting the EU regulations for their blood plasma storage product. They then received support from TechnoDeal and RIF Peccioli in

developing SMART freezing equipment. The project started in 2015 and the first prototype was ready in 2016. After validation at a hospital in northern Italy, KW have now received certification to use their product to store biological and medical material, i.e. blood plasma. Of primary value for KW was the development of software and electronics to manage the smart device. KW will continue to work with RIF Peccioli on other developmental projects with fast and scientific prototyping requirements.

- 3 TURF Europe is a spin-off from Pisa University, qualifying as a small consultancy and R&D firm specialising in building and maintaining turfed areas of all types. TURF focuses on precision farming, which is a business growth area in Europe and which is of particular value for farming communities in Tuscany. Currently, the technology developed and sold by TURF is targeted at the football stadiums market, where light exposure of the turf is uneven over the course of a day and parts of the turf are in shadow, while other parts are exposed to the sun. The first sales of their product were in 2017 and TURF now works with football clubs in several countries, including Spain, Italy and England. TURF had previously worked with TechnoDeal on a joint application for public funding and, as a former customer, were invited to the launch of RIF Peccioli in 2015. Subsequently, it seemed natural to contact RIF Peccioli when TURF conceived the idea of a portable, automatic and battery-driven weather station. In 2016, through the interaction with RIF Peccioli, TURF came into contact with engineers at SSSA who helped them to develop software and electronics, to perform a technical feasibility study and also to streamline the selection of suppliers.
- 4 Castellani, a top-ranked medium sized winery in Tuscany, has opened up one of the vineyards close to Pontedera for robot experimentation. The company values an innovative mind-set and wants to be part of developing new solutions, including robots and drones, for a sustainable agricultural future in Tuscany. The principal reason for Castellani working with RIF Peccioli is that SSSA is a reputable brand with which to be associated in Italy. Previous experiences have shown Castellani that it is worthwhile investing in research studies, even if the innovations are currently far from implementation, as this increases the global competitive advantage of their wine on the market. With regard to the implementation of robotics in their business, this will take place as soon as the Return on Investment (ROI) calculations are good.
- 5 Geostech is a small company that, in collaboration with RIF Peccioli, has developed an integrated and intelligent Internet of Things (IoT) solution for the geographical location of objects and people. One application is the transmission of vehicle operating data, which enables, for example, a prediction of maintenance. Another use of the system is in personal security applications. In addition to the technical collaboration with RIF Peccioli, TechnoDeal assisted the company in the development of the business plan. Geostech's rationale for collaborating with RIF. Peccioli became aware of the competence centre through their network. In common with TURF, Geostech also highlighted that the success of their collaboration with RIF Peccioli was based on the fact that they already had a basic idea of what they wanted to do before they approached the competence centre. Geostech are currently planning a further joint collaboration with RIF Peccioli and TechnoDeal.

In Italy, the RIF concept has been used as a model for the national project ARTES 4.0, financed by the Italian Ministry of Economic Development (MISE). The project consists of a network of 13 universities and 115 companies with a total budget of 30 million Euro. Eight of the universities are responsible for

one competence centre each, all with a different focus. Robotics is the primary focus of Scuola Superiore Sant' Anna (SSSA).

The ARTES 4.0 project is expected to be self-financing within three to five years. The RIF brand will still be used, but the location will shift from Peccioli to Pontedera, where SSSA is based. The plan for RIF Pontedera is to expand to up to 20 employees within three years.

The RIF Pontedera offering will consist of the following:

- Basic Research, Technology Readiness Level (TRL 1-4). Synergies with the European project TERRINET will be established
- Applied research and product development (TRL 5-9)
- Business Development
- Financial support, through a network of various funding bodies
- Training

One significant advantage provided by ARTES 4.0 is that the offered services can be distributed through the national network of competence centres. As a complement to normal outreach activities, such as fairs, exhibitions, cold calls and personal meetings, a "booking.com" concept will be developed, where companies with a concrete need can be matched with a suitable partner in the ARTES 4.0 network.

Collaborations at RIF Bristol

Figure 9 - RIF Bristol

RIF Bristol is operated by the Bristol Robotics Laboratory (BRL), a well-established laboratory with a large number of existing robotics research projects, financed largely by national funding, but also by some EU Funding. BRL have chosen to allocate a special part of the lab to the RIF project. The RIF can rarely use other BRL resources, as these resources are dedicated for the specific research project for which they have

received financing. This is a situation that makes RIF Bristol less dynamic in its structure than the other RIFs in Peccioli and Paris. On the positive side, this means that RIF Bristol has complete control of the resources that are available to support external companies and spin-offs, with the drawback that the lack of flexibility can result in waiting times. In comparison with the other RIFs, RIF Bristol has been 100% financed by ECHORD⁺⁺ and has not benefited from synergistic solutions through other funding sources at BRL. RIF Bristol is located at the University of the West of England, Bristol (UWE).

RIF Bristol is the only RIF of the three that has a clear and well executed system to support organizations over a six-week period in prototyping their ideas and then channeling them out through their connections to continue their business development. This system has resulted in 43 successfully executed projects since 2015, with support provided to 26 SMEs, four large enterprises, five start-ups and seven RTO/Academic organizations during the period. The most important collaborations of the RIF in Bristol can be summarized as follows:

1 **Reach robotics** is a startup selling the gaming robot MEKAMON, an entertainment platform which is able to engage with others of its kind in "robot battles" via augmented reality. Company founder Silas Adekunle has had the kind of big breaks most startup founders only dream of: a \$10 million

funding raise, a place on the Forbes 30 Under 30 in Technology list and an exclusive distribution deal with Apple for his € 300 platform combining robotics, gaming and AR. But in 2014, when he first stepped into the newly-opened Robotics Innovation Facility (RIF) in Bristol, UK, success was by no means certain. Adekunle credits the RIF with not only introducing him to one of his co-founders, Chris Beck, but also for providing valuable manufacturing contacts, prototyping facilities and software development for their new startup, Reach Robotics. According to Adekunle the facilities, market validation and tailored support provided were key to enabling Reach Robotics to pitch to potential investors and take the company to the next stage.

- 2 Walk to Beat is a student-driven spin-off from UWE that has developed a unique walking stick, aimed at minimizing freezing and gait problems experienced by Parkinson's disease patients. The company approached RIF Bristol for help with design and prototyping. Over a period of six weeks, the team in RIF Bristol and Walk to Beat collaborated to develop a prototype. This prototype was used to obtain feedback for further development from patients suffering from Parkinson's disease, as well as being used in presentations to medical staff at hospitals and to potential funders and financiers. Without the support of RIF Bristol, Walk to Beat would not have been able to build a prototype as the company had no engineering expertise.
- 3 Numatic International is a large enterprise with 900 employees manufacturing industrial cleaning equipment such as vacuum cleaners and scrubber dryers. RIF Bristol helped them to pilot and embed robotic automation assembly capability and knowledge, which resulted in improved products and processes to sustain their global competitive advantage. A particular focus of the collaboration was the use of cobots. Numatic came to know the RIF by participating in an open day at BRL. Through the interaction and support of the RIF project, Numatic also learned about the KTP (Knowledge Transfer Partnership). Securing KTP funding enabled the company to continue to work with RIF Bristol one day per week over six months, and to hire an automation engineer to develop a proof of concept. This investment resulted in a cost saving of about 25 percent for Numatic International. Numatic will continue to work with RIF Bristol on future projects and will also recommend that other companies in their network approach RIF Bristol for expertise and support in automating their production lines through robotics.
- 4 Your Socks On is a start-up company owned and operated by Mike Milligan, who has himself experienced a spinal-cord injury. RIF Bristol helped Milligan to develop and test a prototype of a device to assist people with, for example, a broken back, in coping with their injuries and performing everyday tasks. This idea is based on Milligan's personal post-operative experiences. He realized that there must be a market for a device such as Your Socks On, particularly to help with the task of putting on compression socks used in hospitals. Working to realize his Your Socks On device idea, Milligan was advised to approach RIF Bristol by a contact who had been a previous customer of BRL. RIF Bristol supported Your Socks On in developing and testing the functionality of the product.
- 5 Pradeep Devadass was an architecture student who worked with RIF Bristol to incorporate robots in architecture. The cooperation included two steps: First, for Devadass to learn how robots work and how to use them; and second, to help him develop custom software packages for real-time simulations. The project was focused on how to design using the natural form of trees and how to use robots to construct an architectural structure from them. Devadass was a KTP associate, funded by Innovation UK, with an architectural university and RIF Bristol as partners. The value of RIF Bristol for Devadass was in having different knowledge areas consolidated in one place. The

findings of the project have not been commercialized, largely because it was difficult to find a market and the funding necessary to continue the project. This case highlighted the potential for robotic competence centres to identify high achieving students from different academic fields who show promise as future 'super' entrepreneurs; students who are bringing robots into their research area and making robotics valuable to their fields from both a developmental, research, and business creation point of view.

In October 2018, RIF Bristol secured funding from European Regional Development Fund (ERDF) for three years to provide assistance to SMEs. This new programme is called SABRE and has circa one million pounds sterling in funds. The aim of SABRE is to support SMEs across Bristol, Bath, North Somerset and South Gloucestershire with the implementation and use of robotics.

In comparison with the RIF Bristol as part of ECHORD⁺⁺, the time of engagement with customers in SABRE is more flexible, ranging from five days to three months, but the project is more stringent in terms of defining the expected tangible results. This has resulted in a more comprehensive investigative process before choosing companies with which to engage. The new financing instrument enables more engineers to be involved, seven people on a regular basis and up to ten people when needed. The RIF Bristol brand and the special facilities used for RIF activities have been retained (see http://www.rifbristol.com/). Software tools for the estimation of project costs have been established, which make it easier to monitor and follow up on each project.

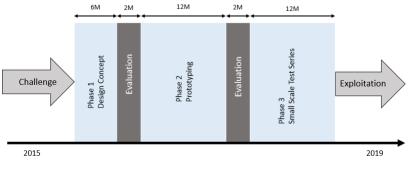
The basic offering will continue to be robotics hardware development, but the project has a parallel goal to build up a consultancy service that, over the long term, will contribute 30% of the turnover. The main challenges to overcome in achieving this goal are the strict rules governing an ERDF project and the University regulations for commercial activities.

The first customer in the new SABRE project was identified during the RIF project. Three new customers have been added to the list of SABRE clients. The overall pipeline for SABRE currently has three additional clients. The target for the next three years is to assist fifteen companies. It is likely that this target will be met and probably exceeded. A marketing budget of £15,000 has been allocated within the project in order to secure a pipeline of new leads. In addition, visits to identified potential customers have been intensified. The successful RIF engagements with Numatic International and Walk to Beat have increased awareness of the RIF Bristol capabilities. This, in turn, has led to companies in the region initiating contact with SABRE to investigate possible cooperation opportunities. More recently, a local company has awarded RIF Bristol a contract for training in robotics and automation. It is expected that this contract will be repeated a number of times over the next year.

1.3.4 Summary of PDTIs

Public bodies often have specific requirements for the products they use. ECHORD⁺⁺ offers to both the technology developers and the public authorities the chance to closely interact and interface with each other during the conception and development of the solution. This is to make sure that the product meets the requirements of the target group, technically and price-wise.

Even though there is little doubt that activating the public sector would release a tremendous innovation power in Europe, the situation is still as Aneesh Chopra, the first Chief Technology Officer


of the United States, stated back in 2014: "Almost no one likes the procurement process" and "public purchasing should welcome entrepreneurial ideas"¹⁰.

On a European scale, Pre-Commercial Procurement (PCP) and Public Procurement of Innovation (PPI) are potential answers to this challenge. And: there are many good examples of EU-funded projects geared to software development where this works well. For robotics, though, with sometimes very complex hardware involved, these programmes did not really take off. ECHORD⁺⁺ has identified several factors, which have prevented robotics technology from fully unfolding its disruptive innovation power in the public sector so far:

- Robotics technology requires a lot of explanation and there is often a language barrier between procurers who think about benefits and providers who think about functions.
- A lot of people have psychological hurdles when dealing with robotics as they are afraid not being able to "master" it properly (hurdle to deal with technology)
- New robotics companies, being entrepreneurial, do not naturally look to the public sector for making technology sales at an early stage
- There is often a separation in the public bodies of the owners of the problems who can understand where technology may fit and the procurers of solutions or products.
- Developing robotics solutions for new applications (in both public and private sectors) can take significant development time, whereas public procurers have become used to off the shelf solutions.

Our answer to these challenges – compared to PCP and PPI - is to shift the focus in our collaboration with public stakeholders. Instead of putting the emphasis on the procurement itself (meaning co-funding and risk-sharing between the supplier and the public procurer, with the aim to motivate the procurement of technology by the latter), as done in PCP and PPI, ECHORD⁺⁺ has set up a process which puts a very strong emphasis on co-creation and knowledge transfer.

This is done by transferring the successful concept of the "experiments" invented in the first ECHORD project and further fine-tuned in ECHORD⁺⁺, to the collaboration with the public sector under the umbrella of ECHORD⁺⁺'s new instrument: PDTI. Following these lines, our major goal was not to initiate a tender process (with financial risk sharing during technology development), but ECHORD⁺⁺ allocated a grant instead (following the funding rules of FP7). The RTD development teams fully covered the cost of their effort via European Commission cost claims. In addition, the public stakeholders, i.e. the owners of the sewer in Barcelona (for PDTI urban robotics) and the hospital in Barcelona (for PDTI

¹⁰ http://www.govtech.com/budget-finance/Bringing-Innovation-to-Procurement.html.

healthcare), voluntarily put additional support effort (effectively an in-kind contribution) as they realized the benefits the new technologies would bring to them.

In terms of co-creation, PDTI again benefited from the knowledge gained with managing the experiments in old ECHORD and ECHORD⁺⁺, and mainly with the intensive coaching of the RTD development teams by members of the ECHORD⁺⁺ core consortium. This coaching had a dual focus in which core members with a technical background teamed up with members with a commercial background and profound experience in commercialization / technology transfer. The technology development process in PDTI was done in a competitive approach in three sequential development phases.Based on requirements specified by public authorities in the area of urban robotics and healthcare, two concrete challenges were identified for PDTI in ECHORD⁺⁺.

Sewer inspection was selected as the ECHORD⁺⁺ challenge in the area of urban robotics: Sewers require many humans to work in risky and unhealthy conditions. Introducing a robotics solution in this process aims at reducing the labor risks, improving the precision of sewer inspections and optimizing sewer cleaning resources of the city, not only in terms of economic expenses but also in terms of water required for the cleaning process and of machinery needed. For ECHORD⁺⁺ the city of Barcelona has provided its sewer network as use-case and test site.

The required robotics solution was required to be able to determine the state of the sewer in order to identify segments where the sewer's functionality has been compromised, either by sediments or by structural defects. Other required functionalities of the technology include sewer monitoring and collecting samples of water, air and sediments.

In the area of healthcare, **Comprehensive Geriatric Assessment (CGA**) was selected as the ECHORD⁺⁺ challenge. CGA is a diagnostic instrument designed to collect data on the medical, psychosocial and functional resources and problems of elderly patients. The information gathered is used to create an overall plan for treatment and follow-up.

Currently, CGA is performed by social and clinical professionals involved in the care of elderly people: physiotherapists, occupational therapists, nurses, social workers, psychologists, medical doctors, etc. Utilizing robotic technology to conduct geriatric tests will reduce the time medical professionals have to spend with purely mechanistic tasks like documentation. Thus, they will have more time to develop individualized care plans for their patients. The possibility to assess and record the cognitive and physical status of a patient increases transparency and objectivity of the assessment. The interim results of the technology development were to be evaluated in the geriatric hospital itself in the traditional manner.

The sewer network is one of the essential infrastructures of a city. Its characteristics – a very wide underground grid of pipelines and galleries, frequently narrow and worn out – along with the presence of big amounts of waste, yield a hostile working environment. Automated collection of data in an environment of this nature is a complex task: in many points of the sewer network the ground is highly irregular and full of obstacles that, combined with the high levels of wastewater and litter, impedes greatly the operability of terrestrial vehicles.

At the end of ECHORD⁺⁺, there are two different solutions to address the specific challenge regarding maintenance and inspection of sewers.

ARSI (Aerial Robot for Sewer Inspection)

The specific challenge of this solution: The use of a Micro Aerial Vehicle (MAV) for inspection tasks in the sewer avoids the mobility constraints from which a ground robot would suffer, such as paths with steps, steep drops and even objects in the way. Additionally, a flying platform is able to move faster through the sewer network than the terrestrial alternative and needs simpler logistics in deployment and operation. On the other hand, a MAV solution has to overcome strong constraints of size, weight and energy, as its flying space is bounded by sections less than 100 cm wide. Therefore, its size, and consequently its payload, are limited to minimal dimensions. At the end of ECHORD⁺⁺, **ARSI** presents a solution, which is extremely strong in terms of software (image processing and has a very high commercialization potential). In fact, with ARSI it takes only half an hour from the moment of data collection to developing the report to the operator. The commercialization of a wearable solution of the sensor package is the low-hanging fruits of ARSI that can easily be used by operators to generate data. The latter would also provide some of the financial resources needed to fund the development of the drone. The next steps in the development process would be to combine their software with off-

Figure 11 - ARSI prototype

the-shelf drones of different sizes and capacities to cover a wide range of use cases in the sewer (and potentially inspection and maintenance tasks beyond this application area). ARSI's business case should definitely go beyond selling a "small" number of drones to a single service provider.

SIAR (Sewer Inspection Autonomous Robot)

The specific challenge of this solution: SIAR was focused on developing a fully autonomous ground robot able to autonomously navigate and inspect the sewage system with a minimal human intervention, and with the possibility of manually controlling the vehicle or the sensor payload when required. To properly address the challenge, the following goals guided the SIAR development: a robust IP67 robot frame designed to work in the hardest environmental conditions; increased power autonomy and flexible inspection capabilities; robust and increased communication capabilities; increased onboard autonomous navigation and inspection capabilities; usability and cost effectiveness of the developed solution. At the end of ECHORD⁺⁺, SIAR presented an economically very viable solution: the target unitary cost given by the challenge provider (owner of the sewer infrastructure in Barcelona) in the challenge requirements was 0,50 Euro/m on inspection tasks; the SIAR system can reach 0,20 Euro/m. IDMind is willing to commercialize the product. The company is building SIAR's commercialization strategy around a B2B model and they are currently looking for companies that can

provide maintenance and inspection services. The acceptance of robotic technology for maintenance and inspection is changing dramatically. A new market with very interesting opportunities is opening up, and the consortiums are on the edge of taking the right choices to benefit from this situation.

Figure 12 - SIAR prototype

CLARC - Smart Clinic Assistant Robot for CGA

CLARC incorporates a RGB-D sensor, a touch panel, and a shotgun microphone, being able to perform Barthel and GetUp&Go tests without supervision. Additionally, these sensors are supposed to allow the robot to collect additional data automatically during the CGA interactive session using non-invasive procedures. For performing the Barthel test, CLARC offers the interviewee an external device that ease him to answer the questions. The advantage of using a mobile platform is to gain a clinical assistant that – apart from assisting the clinical staff in performing the CGA tests – can accompany the patient and the families to the medical consulting room. During the runtime of ECHORD++++, CLARC generated very valuable scientific results. With XXX scientific papers published, CLARC was one of the most performant experiments in terms of generating scientific knowledge. The platform has made significant progress towards integrating user needs into the design process. Careful attention was given to the interface between the older person and the system - recognising fears and uncertainties had may have militated against effective 'engagement' with the robot. The attention given to adjusting the design and appearance of the robot was therefore important. Also, the data representation and management were rated very positive by the medical experts. Another positive element in the CLARC project is the large number of patients with whom tests have been carried out (more than 400 patients so far). This has helped to better integrate the user perspective in the development. In order to be fully commercial, the platform still needs further development for which the consortium has acquired the funding already. The data representation and management interface certainly are an asset the solution can build on. To this end, strategies for integration into IT-infrastructure should be further developed.

Figure 13 - CLARC user test, prototype and remote control (right)

ASSESSTRONIC

Figure 14 -ASSESSTRONIC prototype

1.4 Impact

1.4.1 Impact of experiments

The ASSESSTRONIC solution consists of a tablet for the question-and-answer part of the tests to be performed for the Comprehensive Geriatric Assessment. This tablet can be connected to a kinetic system to take images for the tests which tracking of patients' movements over time (for instance the Get-Up-And-Go test). At a very early stage of the development process, the ASSESSTRONIC team took the decision to not go for an autonomous system, but for a highly modular portable one. The system benefits a lot from its simplicity, scalability and thus does not impair a high risk of failure. The TRL level is rated at TRL 6. The system is on its way to a market-ready solution. From the user perspective, many good elements are demonstrated. ASSESSTRONIC will need an additional two years to commercialize their product. If the last gap in the technology development and the testing with a sufficiently high number of patients is performed, ASSESSTRONIC has a very strong partner on board to bring the product to the market.

The ECHORD⁺⁺ experiments brought together industrial end users and academic researchers. Thus, from the very beginning of the project, the usual technology push concept has been replaced with clear technology pull. Such an approach led to development of market-oriented solutions, with 74% of experiments reporting either new product (58%) or new service (16%) as the innovative outcome of their projects. Over half of the surveyed experimenters stated, that the results are highly innovative and can be easily appreciated by the customers. What is even more important, only 19% of experiments do not have a clear plan for economic exploitation of the experiments' results. Almost 42% of the experiments is planning to bring the innovative solutions directly to the market, whereas the remaining 39% will deploy the solution within partners' facilities. Even more important is the fact, that **almost half of them have already secured funding for further exploitation**.

The market-oriented mechanism of the experiments resulted in fast implementation of the exploitation plans – results of almost 27% experiments from the 1st Call are already being commercially exploited. Majority of the experimenters declared, that the developed innovation will be commercialized either within the next year (6 experiments) or in less than 3 years (12 experiments). This is visible in the activities undertaken by the experiments. The participants of the 1st Call have already shifted towards more advanced stages – certification and securing funding for further development. The experiments from the 2nd call are catching up with most of them having completed the early stages of commercialization process – development of demonstrators, business planning and market studies and moving towards the more advanced steps.

Beside this direct economic impact, the ECHORD⁺⁺ experiments instrument has significantly contributed to development of entrepreneurial spirit of academic researchers. The unique concept of the experiments required a paradigm shift from traditional, academic research projects towards a more business-oriented approach. **The experimenters reported significant development of non-academic skills** – communication (46%), marketing (12 %) and business planning (26%). Moreover, one third of the projects involved media or communication professionals in order to maximize outreach.

What is even more important and **highlights ECHORD**⁺⁺ **contributions towards shaping entrepreneurial academic culture**, is that 4 spin-off companies have been already established by the academic partners of the experiments. Those include ANYbotics AG (MODUL), IDRhA – Innovative devices for Rehabilitation and Assistance (HOMEREHAB), FlexSight Srl (FlexSight) and Marsi Bionic (EXOTRAINER).

Those results have been achieved without sacrificing the traditional scientific impact of research projects. One of the selection criteria of the ECHORD⁺⁺ experiments was their scientific excellence and indeed, they excelled in delivering top-quality outcomes. The experiments had significant impact on the research community, which was reflected in a number of research publications including high impact journals and conferences (see section A1: List of scientific publication).

The application areas of many ECHORD⁺⁺ experiments reflect the issues and problems currently faced by the European society and industry. The raising costs of workforce and difficulties with recruitment related both to the ageing society and lack of digital skills undermine the competiveness of the European manufacturing sector. The companies are forced to revolutionize their processes in order to decrease the traditional dependence on physical capabilities of workers, to make new technologies more accessible and to support human workers on the shop floor. Only that way it is possible to open the industry to currently underrepresented groups (e.g. women or elderly) and maximize to addedvalue of employees.

The technologies developed in ECHORD⁺⁺ experiments directly support this goal. Starting with the specialized robotic assistant developed in **2F** and **TIREBOT**, through tools supporting easy and intuitive programming of robots being results of **CoHRoS**, **DUALARMWORKER** or **DexBuddy**, to smart AGV-based solutions developed in **SAFERUN**, **FASTKIT** and **MAX-ES** the results of the ECHORD experiments facilitate transition from the traditional worker archetype towards the knowledge worker of the future, as foreseen in the Factories of the Future roadmap.

Similarly, the agrifood sector is marred by difficulties in finding sufficient number of workers. This is caused both by the strenuous tasks in often difficult working conditions and low production margin directly translating into low salaries. Several of ECHORD⁺⁺ developed innovative solutions potentially eliminating the most arduous tasks such as harvesting of vegetables (**GARotics** and **CATCH**) or seedlings grafting (**INJEROBOTS**).

The everyday lives can be affected even stronger by the results of the healthcare robotics experiments. The ageing of society ncreases demand for long-term healthcare and rehabilitation. At the same time access to necessary facilities and services is often limited. Results of **LINarm**⁺⁺, **HOMEREHAB** and **MOTORE**⁺⁺ are already commercially available or close to being put on the market and offer cost-efficient and easily accessible rehabilitation to post-stroke patients. The rehabilitation exoskeleton developed within **EXOTrainer** provides children affected with Spinal Muscular Atrophy with walking capabilities immediately increasing their quality of life and reducing risk of complications caused by immobility and lack of proper rehabilitation. The impact of such solutions is twofold – they improve the quality of life and prevent exclusion of individual patients but also improve the overall efficiency of healthcare systems by removing one of the bottlenecks.

Finally, the ECHORD⁺⁺ experiments had a tremendous impact on the research funding landscape in Europe. The instrument initially proposed within ECHORD and further developed in ECHORD⁺⁺ can be seen as the prototype of the Financial Support to Third Parties widely adopted in many Horizon 2020

project. The processes for selection of the experiments, their monitoring and reviewing have been developed and continuously polished throughout both calls. This is reflected both in the growing satisfaction of the experimenters in the monitoring process (51% of positive opinions in the 1st call, 74% in the 2nd call) as well as interest in similar initiatives (65% of participants are very interested in participation in similar projects). They have also proliferated beyond ECHORD⁺⁺, and have been adopted in several other projects (e.g. HORSE, RobMoSys, ESMERA) becoming a widely accepted approach to open call management.

The outcomes of the experiments have been carefully analysed and an additional, originally unforeseen instrument has been developed and piloted – the ECHORD⁺⁺ Experiment Booster Programme. The purpose of the instrument was to provide individualized, targeted support to experiments needing only slight push to cross the infamous "valley of death" and commercialize their results. After successful implementation the instrument is ready to be used by other FSTP project to support them in maximizing their impact.

1.4.2 Impact of RIF

Lack of testing facilities has been identified as one of robotics' major handicaps, particularly for small and medium enterprises (SMEs) and startups, like the aforementioned Reach Robotics, who cannot afford to pay to test systems or products. To remedy this, three RIFs were established by ECHORD⁺⁺, with free access to state-of-the-art robotics technology, hardware and software expertise, legal advice and more. The RIFs served as collaborative test beds for exploring how academia can successfully interact with small, medium and large enterprises to drive robotic development and economic growth in Europe. The real need in European industry addressed by the RIFs is even increasing rapidly, given that automation and digitalization of most industry's operations is key to staying competitive.

The RIFs' success stories in testing out new automation ideas and helping businesses develop innovative technology are numerous, but the main socio-economic impact and the wider societal implications go way beyond the individual RIF collaborations. In fact, the lessons learned from the RIFs as pilot cases for Digital Innovation Hubs are invaluable for maximizing the positive impact DIHs are supposed to have on the European economy and the European job market. Therefore, in this chapter we emphasize the main insights taken from the RIF instrument suggesting using them to maximize the impact of any other RIF-like structures under the umbrella of European funding.

At the beginning of ECHORD⁺⁺ the expectation was that the RIFs would field large numbers of solicitations from prospective beneficiaries. Reality proved somewhat different. In particular, if the RIFs did achieve a high volume of activities over the duration of the project in excess of a hundred technical collaborations, the efforts required from the RIFs to motivate participation of beneficiaries proved significant. Value of the service provided did not appear to be self-evident, at least initially. "Built it and they will come" turned out to be an invalid approach for the RIFs. Motivating active participation of the Instrument's core target audience (Small and Medium-sized Enterprises, SMEs) has demanded time, efforts, and pedagogy. In addition, the RIFs initially expected to develop collaborations with beneficiaries from across most of Europe. Instead, the overwhelming majority of successful RIF collaborations were developed with beneficiaries located in relative proximity to the RIFs' facilities. This important finding has already been incorporated in the EC's Digitising European

Industry initiative (DEI) strategy, or to say it in former Commissioner Oettinger's words: "My objective is to have at least one world class digital innovation hub in every region in Europe."¹¹

Sales and marketing efforts designed to reach the identified target groups are critical in establishing a sustainable business alongside with dissemination of examples of successful cooperation. These activities require dedicated resources. Given that the time between first contact to delivered service can be long, up to several years, it is necessary to build an extensive pipeline of potential customers. Only a certain percentage of these leads will be interested in robotics, which will reduce the number of leads in the pipeline. The next step is to qualify these remaining leads i.e., to determine if the customer organization has sufficient competence and resources to handle robot implementation. This qualification process will lead to a further reduction of the number of leads.

The experience from the RIF project enables an estimation of the percentage of qualified leads that might result in a project, in relation to the number of first contacts. Based on this figure, the resource and time requirements in relation to the current pipeline can be assessed and the budget adjusted accordingly. A customer relationship management (CRM) tool is recommended for this exercise. In total, from October 2013 to September 2018 the RIF network has managed to:

• Engage in 128 collaborations

Global RIE Groun

- Serve 1225 RIF clients with RIF offerings
- Conduct 72% of all activities with SMEs

RIF User Type: Bre	akdown by a	Activity (RUN	NING TO	TAL)							
Unique clients:	1225										
Digital Media Connections	Twitter Followers 2767	LinkedIn Contacts 0	Facebook Fans	YouTube Views 15659	Email - Organisations 1963	Email - Individuals 4058	TOTAL 24447				
connections	2/0/	U	v	13033	1903	4038	24447				
Interactions	Researcher	Entrepeneur	Start-Up	SME	Large Business	Public Body	Research Centre	HEI	Network	TOTAL	% of Interactions
InfoDays	47	0	0	33	1	3	0	9	0	93	7%
RIFLaunches	51	0	6	101	20	8	5	5	6	202	15%
External Events	0	0	10	217	43	12	23	13	80	398	30%
Collaborations	7	0	19	66	33	0	1	2	0	128	10%
Workshops	42	3	8	213	52	9	4	30	11	372	28%
Market Assessment	0	0	6	2	0	0	0	0	0	8	1%
Internships	33	-	-	-	-	-	-	1	-	33	3%
E++ Experimenters	0	0	0	8	1	0	1	0	0	10	1%
Pipeline	0	0	5	51	15	0	0	1	0	72	5%
	180	3	54	691	165	32	34	60	97	1316	
											-
	Researcher	Entrepeneur	Start-Up	SME	Large Business	Public Body	Research Centre	HEI	Network	TOTAL	
Unique Clients	148	4	46	667	174	26	34	50	76	1225	1
% of Total Clients	12%	0%	4%	54%	14%	2%	3%	4%	6%		

Figure 15 - RIF user statistics

With further regard to marketing all three RIFs agree that personalized meetings are key, in order to understand the needs of the customers and to identify the individual organisation's ability to enhance robotics technology. As a result of this initial analysis, a tailored offering can be made to each customer, establishing trust and leading to a fruitful cooperation. However, the original idea of offering a sixweek free trial is only a subset of offerings needed to deliver value to customers, since the customers' needs may vary greatly depending on the size of the organization or the maturity of the aspired technological solution.

Also, during the RIF project, all three RIFs have learned that management and management processes are key components for a successful operation and must be addressed in the future Robotic

 $^{^{11}} http://s3platform.jrc.ec.europa.eu/documents/20182/245218/Cecile+Huet.pdf/5b211f77-186f-4a1e-ab10-702c9b3f516f$

Competence Centres (RCC). Running a network of RCCs requires leadership with the ability to create trust and facilitate communication in a distributed organization. The project should identify and position managers that understand group dynamics and can establish a collaborative environment that operates in a so-called "Green Zone"¹². Summarising our insights on management processes and internal communication we have developed the following five suggestions for future RCC networks:

- Set common values and rules and allocate dedicated resources at each RCC. Expectations need to be defined at the beginning and remain unchanged during the project, unless agile processes are in place and complementary funding is available.
- Strive for collaborative platforms and collaborative projects, by sharing offerings and testbeds. Document each centre's competences and resources. Find common opportunities and make sure that the project delivers meaningful and tangible benefits for European industry.
- Aim for global consistency, but with local activity. Share customer needs, market information and best practices. Establish processes enabling the temporary exchange of experts and other personnel, such as students, in order to improve the collaboration and understanding of each other's operation.
- Establish tools for shared communication (internet, fairs etc.) and coordinate seminars and workshops. Include 'story telling' on marketing strategies as a way to present successful projects. Share marketing material and coordinate the work on social media (LinkedIn, Twitter etc.) in order to facilitate the creation of a common virtual market place.
- Given these limitations and advantages, it is our assessment that any future RCC project aiming to support the sustainability and market growth of European industry needs to be managed using agile methods and an iterative process as shown in the figure below.

Another learning from the RIF project is that large enterprises have different needs than SMEs. Large enterprises often invest in developing new disruptive solutions in order to lead the market, while SMEs invest in developing innovative products in order to be competitive in the market. This results in differing time and financial scales. Large enterprises accept a longer time to market and are often prepared to contribute with substantial investments, while SMEs need a quick time-to-market and often have limited financial resources. In many cases, SMEs also require additional services, such as legal work, co-financing and help with insurance and safety issues. The experiences from the RIF operation show that many SMEs chose not to work with RIF Peccioli due to long lead times, as was also the case in RIF Paris.

Regarding financial sustainability of RCCs, innovative collaborative agreements between universities, public actors and private companies must be investigated. The development of such innovative agreements is possible only if each RCC understands the partners with whom they are interacting, and if they are able to co-create local solutions and find suitable financing options. In order to avoid a situation where the funding allocated to the project is based on estimations, we recommend that the funding for further projects is divided up based on the achievement of a number of milestones, which relate to each step in this process and also allow for several reiterations of the process. This reduces the risks for the funding body and increases the likelihood of a successful output from the project.

¹² Tamm, J W, 2005, Radical Collaboration: Five Essential Skills to Overcome Defensiveness and Build Successful Relationships, Harper Business, pp 336.

Successful implementation of this method depends on easy application procedures and simplified reporting structures.

All three RIFs have managed to finance a continuation of their operations. During the runtime of ECHORD⁺⁺, all the RIFs acquired a deeper knowledge of the dynamics of tech transfer activities, which has been exploited in their subsequent operations. Models for alternative "tech-transfer" career paths have been developed, particularly in the university environments.

The RIF project has resulted in an improved regional and national visibility. All three RIFs will therefore continue to use the brand "RIF". The key improvements to the RIF project in the continued operations are more efficient interaction with potential customers, improved internal processes to deliver results, and improved internal and external communication processes.

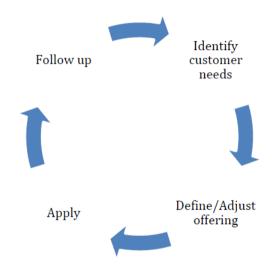


Figure 16 - Iterative Service Design process for continuous improvement of the organisation and its offerings

The numerous wider socio-economic implications of the RIF instrument are accompanied, as mentioned above, by an already significant economic impact achieved by the RIFs. RIF collaborations have directly led to the creation of several startups, some of which have secured financial support from venture capital well in excess of €1 million. In addition, a significant number of the proofs of concept developed in collaboration with industry have led to the development of new products (or improvement to existing ones). Finally, the RIFs proved very successful in experimenting with different additional services in complement to the typical six-week technical collaboration, including: Educational workshops, Intellectual Property (IP) management support, networking support, connecting innovators with venture capital and system integrators, as well as due diligence services for investors in robotics, to name but a few.

1.4.3 Impact of PDTI

PDTI Urban Robotics

Using robots for the Inspection and the Clearance of the Sewer Network in Cities generates impact in a multitude of different areas. The main purpose is to reduce the labour risks, improve the precision of sewer inspections and optimize sewer-cleaning resources of the city. The impact outlined below just reflects the expectations of the public organization, which owns the sewer infrastructure in Barcelona.

Economic Impact: The sewer inspection cost in Barcelona is about 1 million \in per year what represents 12.5 % of the total cost of sewers management (about 0.75 \in /lineal meter) the new technology developed reduces the cost to 0.50 \in /lineal meter, the saving would be about 30%.

Environmental Impact: The new technology would prevent overflows both to the city and to the environment. Through early detection of defects in the sewer, it would be feasible to prevent wastewater leaks to the underground that could finally get into underground water. And, deeper knowledge of the sewage tendencies would help to tackle and design measures to reduce odours from sewers and environmental policies.

Social and Cultural Impact: The citizens' life quality would improve since a better sewer performance would prevent overflows and odour problems, minimize the affectation to public roads thereby reducing its costs. Finally, the new technology is expected to improve sewer workers' health and safety since they will not have to enter into dangerous locations classified as confined spaces.

Innovation Impact: the new technology is expected to really improve the current inspection methodology by reducing the health risks for workers and making it affordable to public administrations.

Ability to Execute: the new technology is expected to be really feasible and affordable to implement and include in the current inspection services. The public entity was not looking for a robot but for an innovative operational procedure to inspect and maintain the urban sewer.

ARSI and **SIAR** consortia proposed their business plans at the beginning of the research and technological development procedure: a market overview, the exploitable results and IP rights management, the business model and exploitation plan and the economic viability for every company and institution involved the robot manufacturers (Idmind, Simtech Design,Ibak), the inspection services company (FCC) and the public entity (BCASA). During the PDTI RTD phases, the economic viability of the solutions has been adapted. For example, the robot manufacturers looked for a robotic service instead of a robotic product; the public service company became the supplier and the public entity not only boosted the innovation but also reduced the costs of this public service.

At the end of ECHORD⁺⁺ there are two viable technical solutions – **ARSI** and **SIAR** – with complementary strength points and synergy effects to be exploited. A lot of interesting technology has been developed and/or integrated in both projects. Both projects allow for the commercialization of technological components, such as wireless communications, sensors, data handling and analysis, robotics. Some solutions combined with the current systems used by service providers can already generate cash flow. Each separate value package can help the consortia to further increase the maturity level of the platforms and thus help them to arrive to the market sooner, in an easier and cheaper fashion, but more importantly help the market to understand the potential of the technology ARSI / SIAR are developing and be ready to accept an improved product. Linked to dissemination activities under Echord⁺⁺, both consortia have received new proposals to replicate their solutions in other scenarios.

An additional two years of technology development will be needed to arrive at fully commercial products. An earlier commercialization of partial solutions is possible.

PDTI healthcare

Due to the demographic change with a growing share of elderly people in society, Comprehensive Geriatric Assessment (CGA) is becoming more and more important. The objective of the standard tests

standing behind the geriatric assessment is to develop personalized care plans that adequately address the easing of the physical and mental capabilities of the elderly person while integrating the relatives and their needs and constraints into the care plan. The challenge of Comprehensive Geriatric Assessment as done nowadays is the time investment required by the medical staff to support the patient in performing standard tests. Shortage of qualified personnel as well as a growing demand reduce more and more the time doctors can allocate to the development of the appropriate care plan. Without the support of electronic tools, the assessment done by humans – for instance when performing the Get-Up-And-Go test with the patient - is very subjective. Using different media in the tests which are not connected to each other (i.e. data is not integrated or even incompatible with the data management system of the hospital) further impede an efficient allocation of time of the medial staff to the generation of an ideal care plan for the patient. The technology developed under the umbrella of ECHORD⁺⁺ has achieved impact in the following areas:

- improve the diagnostic plan and give right and proportional therapeutic decisions: evaluations from the medical personnel at St. Antoni Abat show that the technology is very promising to create better diagnostics, especially concerning the physical evaluation
- increase patient's functional autonomy at hospital discharge
- select of the most adequate level of care for the patient: with additional data and more precise data on the physical tests, the doctor can choose a more adequate level of care
- manage and store data efficiently: the teams have both worked on a solution that can be integrated into the current data management system, the results from the robotics assessment can easily be copied to the healthcare professional's report
- reduce the stress of patient (who may feel being examined while communicating professionals): both solutions enable the patient to conduct mental tests on their own via a tablet screen
- shorten the total length of the process-using a robotic solution, a reduction of more than 30% of Health Professional's time can be expected and thus reduce current costs: calculations performed during PDTI Phase III show that the systems developed in PDTI healthcare can not only add value to the assessment, but also reduce costs.

Time spent for CGA process using traditional approach VS using ASSESSTRONIC system*

		2	Activity 3 doctor		Activity 2 nurse	Activity 3 nurse	TOT average
Traditional	15'-20'	20'-30'	15'-20'			-	60'
ASSESSTRONIC	15'-20'	-	15'-20'	-	9'-12'	-	45'

Activity 1:

clinical interview

Activity 2: standard tests

Activity 3:

medical diagnosis

CGA process costs using traditional approach VS using ASSESSTRONIC system*

		2	Activity 3 doctor		Activity 2 nurse	Activity 3 nurse	TOT average
Traditional	9.5€	14€	9.5€		-	-	33€
ASSESSTRONIC	9.5€		9.5€	•	3.5€	•	22.5€

Payback period < 2months

* Assuming that both the cognitive and the physical assessment modules are used

Figure 17 - ASSESSTRONIC business case

Figure 17 states the business case calculated for the ASSESSTRONIC system with a payback period of 2 months based on data from (CatSalut, hosiptals in Catalunya). CLARC plans to offer a full-service model with initial costs of $15 \notin$ per CGA with the robot. Based on data from University hospital Jena, the remaining savings for the clinic per day are $262 \notin$ (see figure 18). If the clinic initially has to pay 3.500 \notin setup fee, the payback time for this is less than two months.

Figure 18 - CLARC Savings

The solution pursued by CLARC – an interactive mobile service robot combined with a portable device developed for elderly – intends to save about 75% of the time that needs to be invested in each single test. CLARC intends to offer a full-service solution in a subscription model to hospitals. At the end of ECHORD⁺⁺, CLARC has generated a lot of scientific knowledge. Components of the solution should be further developed. The full-fledged solution still requires work to increase the robustness of the platform. The data representation and management interface certainly is an asset the solution can build on. To this end, strategies for integration into IT-infrastructure should be further developed.

The system presented by ASSESSTRONIC consists of a kinematic system in combination with a tablet PC. The modular approach makes the system extremely scalable in price. The system benefits a lot from its simplicity, scalability and thus does not impair a high risk of failure. The TRL level is rated at TRL 6. The system is on its way to a market-ready solution. From the user perspective, the system includes many good elements. This is the result of some previous technical recommendations of the reviewers having been taken into account carefully. The business plan is solid with regards to market expectations, the market approach, and foreseen sales estimates. The current business plan does not yet properly reflect the fact that a CGA system is a medical product. Therefore, the costs for medical certification need adjustment.

Lessons learned

At the end of ECHORD⁺⁺ the consortium feels that PDTI combines quite successfully the merits of PCP (competitive development approach in clearly defined development phases) with the benefits of the approach on robotics technology development implemented in the "experiments" instrument – first in old ECHORD, now in ECHORD⁺⁺, i.e. intensive coaching by members of the core consortium (done in pairs by coaches with a technical and a managerial background) and allocating a grant following FP7 rules (instead of pushing for procurement with risk-sharing between procurer and RTD development teams). The lessons learned of ECHORD⁺⁺ can be summarized as follows:

- If the technology development in a PDTI-like activity is from the beginning restricted to a specific technology (in our case robotics) it is vital to make sure from the beginning that the challenge allows for such a restriction.
- When setting up the teams (both for the technology development as well as for the monitoring resp. coaching) it is important to make sure that all stakeholder groups are identified and actively involved in the process. The level of engagement of the different groups can vary in the different phases of the technology development process, but it is important to have all stakeholders with their interests on the screen.
- When collaborating with the public sector it is important to understand that user and purchaser of the technology are not necessarily the same entity and that the interests of these two can be very different from each other. So, it is necessary at the beginning to clarify the role and decision-taking power of each stakeholder. It is also vital to understand the criteria, which the procurer implements to motivate the purchase decision. This goes in line with the learnings from the RIFs: In projects like ECHORD⁺⁺ the core consortium implements processes, which need to be compatible with the purchase-triggering procedures, which are already in place in the respective organizations.
- When dealing with hardware it is important for the development teams to have a proper mock-up in their labs. SIAR was successful in terms of prototype development because they had a proper mock-up sewer in their lab, which allowed them to perform many tests, while ARSI never achieved to set up such an environment.
- The coaching by the tandems business-technical from the core teams was tremendously • important to achieve the results. Coaching needs to include technical as well as business competence. At the end of ECHORD⁺⁺, there are three prototypes, which will make their way to market within maximum two years if they are able to generate the funds and continue to get the support needed to make this happen. CLARC's way to market is longer, but this team has generated very valuable scientific knowledge and has already managed to acquire additional funds to continue their development. CLARC is probably the team which shifted their mind-set most: They have learned to adopt the agile project management approach, have learned how to integrate user perspective in their healthcare development and have forged a lot of new contacts (including hospitals with patients for testing) which will help them a lot to be successful in the future. Before putting more effort into commercialization, the platform in the CLARC solution needs to be further investigated. Future applications need to be investigated and tested more - CLARC's solution is very future oriented, ASSESSTRONIC's solutions definitely solves today's enduser needs
- Having an additional in-person review meeting between the development teams and the
 external experts was particularly helpful. Done is sewer inspection, this helped to identify
 opportunities in commercialization as well as in the collaboration between the two teams,
 which started as competing organizations, but now benefit a lot from collaborating with
 each other.
- The monitoring and coaching in PDTI healthcare and PDTI sewer have followed a different approach: While sewer worked with monitoring session alternating between on-site testing and a common set of deliverables, PDTI healthcare developed a common set of

KPIs which were applied to teams with a completely different system (modular system instead of a mobile platform). What counts is that the intensive coaching takes place.

- PDTI in ECHORD⁺⁺ has demonstrated that public bodies are highly interested in working in interdisciplinary teams to develop the technology they need. The intensive collaboration is extremely important to lower the entrance barrier for the public body. The collaboration is most beneficial if the end user benefitting most is directly involved in the project. In case of sewer inspection, it is the owner of the infrastructure rather than the service provider, in case of healthcare it is the medical doctors and not the procurement agency. PDTI has managed to develop two public bodies who will be ambassadors of the collaboration with roboticists and the implementation of robotics technology. So, innovative procurement in Europe can happen and be very beneficial if the right coaches are in place and are committed to spend the necessary effort. And PDTI requires a lot of effort. The market, though, is potentially very high then, as well.
- The active involvement of the public sector is key to the success of the technology development. Both, public procurers as well as end-users contribute know-how and experiences which are unique. Often the procurement agency is organizationally separated from the end-user of the technology. This separation can be tricky if the weight of the end-user in the purchase decision is not entirely clear. It makes sense to put an emphasis on clarifying the roles prior before setting up joint projects. It also makes sense to implement a methodology on how to assess a public stakeholder in terms of purchase power, organizational structure, engagement, contribution to commercialization etc. The PDTI activities have demonstrated that inspiring the user-centred approach in development teams is a tremendous effort, particularly if the teams have not been exposed to such an approach before. The coordination during all the process by a multidisciplinary team, not only technological one (robotic in our case) is crucial to prevent the development of research-driven technology, which fails to meet market needs.
- Before committing resources in a collaboration with public bodies which is very demanding and time-consuming, it is recommendable to assess the qualification of the public body (resources, track record in commercialization – particularly in EU-funded projects, network etc.). This can be extremely important for the DIH networks in robotics that have just started their activities. The situation has changed now in comparison to the early days of PDTI: Public bodies need less motivation as they start seeing the benefit. Therefore, the EC can be selective.
- Delays need to be avoided by all costs in any technology development project, which is structured in phases. This holds true for PDTI-like activities, but also for huge Flagship projects like HBP. Reliability and a sound planning ground are key to success.

1.5 List of all beneficiaries

	Core Pa	rtners			
Beneficiary Number	Beneficiary name	Beneficiary short name	Country	Project entry month	Project exit month
1 (coordinator)	TECHNISCHE UNIVERSITAET MUENCHEN	TUM	DE	1	67
3	UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL	UWE	UK	1	67
2	SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT'ANNA	SSSA	IT	1	67
4	UNIVERSITAT POLITÈCNICA DE CATALUNYA	UPC	ES	1	67
5	COMMISSARIAT `A L'ENERGIE ATOMIQUE ET AUX ENERGES ALTERNATIVES	CEA-LIST	FR	1	67
6	BLUE OCEAN ROBOTICS	Blue Ocean Robotics	DK	1	67
7	R.U.Robots	R.U.Robots	GB	1	67
8	TECHNODEAL SRL	TED	IT	16	67

	E	xperiment Pa	rtners Ca	III 1		
Beneficiary Number	Beneficiary name	Beneficiary short name	Country	Experiment(s)	Project entry month	Project exit month
36	IMER INTERNATIONAL SPA	IMER	IT	Flooring Fellow	16	67
41	ROBOTECH SRL	RT	IT	Flooring Fellow, MOTORE**	16	67
29	FLEXIBLE ROBOTIC SOLUTIONS	FRS	BE	3D SMART SENSE AND CONTROL	16	67
38	KATHOLIEKE UNIVERSITEIT LEUVEN	KU Leuven	BE	3D SMART SENSE AND CONTROL	16	67
17	BIELEFELD UNIVERSITY	UNIBI	DE	CoHRoS	16	67
19	CARL CLOOS SCHWEIßTECHNIK GMBH	CLOOS	DE	CoHRoS	16	67
31	FUNDACIÓN TEKNIKER	IK4-TEKNIKER	ES	DEBUR	16	67
34	IDELT, INGENIERÍA DESARROLLO PROTOTIPOS	IDELT	ES	DEBUR	16	67
16	ARTIMINDS ROBOTICS GMBH	AMR	DE	DexBuddy	16	67
13	AEA S.r.I.	LOC	IT	DexBuddy	16	67

45	THE SHADOW ROBOT COMPANY LIMITED	SHADOW	UK	DexBuddy	16	67
37	KARLSRUHER INSTITUT FUER TECHNOLOGIE	КІТ	DE	DexBuddy	16	67
15	AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS	CSIC	ES	EXOTrainer	16	67
39	MARSI BIONICS	MB	ES	EXOTrainer	16	67
32	HOSPITAL SANT JOAN DE DÉU	HSJD	ES	EXOTrainer	16	67
44	STRAUSS- VERPACKUNGSMASCHINEN GMBH	STRAUSS	DE	GARotics	16	67
47	UNIVERSITÄT BREMEN	UNIHB	DE	GARotics	16	67
18	C.WRIGHT & SON GEDNEY LTD	CWS	UK	GARotics	16	67
25	EKYMED SPA	EKY	IT	LA-ROSES	16	67
28	FASTENICA S.R.L.	FAST	IT	LA-ROSES	16	67
21	CONSIGLIO NAZIONALE DELLE RICERCHE	CNR	IT	LA-ROSES, LINarm ⁺⁺	16	67
48	UNIVERZA V LJUBLJANI	UL	SI	LINarm ⁺⁺	16	67
23	ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE	EPFL	СН	LINarm ⁺⁺	16	67
35	Idrogenet Srl	IDROGENET	IT	LINarm ⁺⁺	16	67
14	AGCO GMBH	AGCO	DE	MARS	16	67
27	HOCHSCHULE ULM	HSU	DE	MARS	16	67
24	EINGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH	ETHZ	СН	MODUL	16	67
20	CDD MONOPROSOPI ETERIA PERIORISMENIS EFTHINIS YLPIRESION EREYNAS KAI ANAPTIKSIS	CDD M.E.P.E.	GR	MODUL	16	67
33	HUMANWARE S.R.L.	HMW	IT	MOTORE++	16	67
26	FABRICA 136 SRL	F136	IT	MOTORE++	16	67
30	FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.	FRAUNHOFER	DE	pickit, SAPARO	16	67
42	Scape Technologies A/S	STAS	DK	pickit	16	67
40	PILZ GMBH & CO. KG	PILZ	DE	SAPARO	16	67
46	UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA	UNIMORE	IT	TIREBOT	16	67
22	CORGHI S.P.A.	CORGHI	IT	TIREBOT	16	67

		PDTI Partne	rs (public	bodies)		
Beneficiary Number	Beneficiary name	Beneficiary short name	Country	PDTI Challenge	Project entry month	Project exit month
9	Barcelona Cicle de l'Aigua, S.A. Public Limited Company	BCASA	ES	Urban robotics	16	67
10	Ajuntament de Barcelona City Council (P0801900B, Ajuntament de Barcelona)	Aj BCN	ES	Urban robotics	16	67
11	Agencia de Qualitat i Avaluacions Sanitaries de Catalunya	AQuAS	ES	Healthcare	16	67
12	FUNDACIO PRIVADA SANT ANTONI ABAT	ABAT	ES	Healthcare	16	67
	L	PDTI R&D	Partners			
52	ASSISTANCE PUBLIQUE - HÔPITAUX DE PARIS	AP-HP	FR	ARNICA	26	35
51	TEKNOLOGISK INSTITUT	DTI	DK	ARNICA	26	35
50	INLOC ROBOTICS SLU	INLOC	ES	ARNICA	26	35
49	ROBOSOFT Services Robots	ROBO	FR	ARNICA	26	35
53	FUNDACIÓ EURECAT	EUT	ES	ARSI	26	67
54	FOMENTO DE CONSTRUCCIONES Y CONTRATAS SA	FCC	ES	ARSI	26	67
55	SIMTECH DESIGN SL	SD	ES	ARSI	26	67
56	IBAK Helmut Hunger GmbH & Co. KG	IBAK	DE	ARSI	26	67
57	ACCEL	ACCEL	FR	ASSESSTRONIC	26	67
58	Sorbonne Université	SORBONNE	FR	ASSESSTRONIC	26	67
59	SERVICIO ANDALUZ DE SALUD	SAS	ES	CLARC	26	67
61	UNIVERSIDAD DE MALAGA	UMA	ES	CLARC	26	67
62	UNIVERSIDAD CARLOS III DE MADRID	UC3M	ES	CLARC	26	67
63	CYPRUS UNIVERSITY OF TECHNOLOGY	СUТ	СҮ	ROBODILLOS	26	35
64	HELIKAS ROBOTICS LTD	HEL	CY	ROBODILLOS	26	35
65	IDMind-Engenharia de Sistemas, Lda.	IDM	PT	SIAR	26	67
66	Universidad de Sevilla	USE	ES	SIAR	26	67
67	Universidad Pablo de Olavide	UPO	ES	SIAR	26	67

68	METRALABS GMBH NEUE TECHNOLOGIEN UND SYSTEME	MLAB	DE	CLARC	26	67
110	UNIVERSITE DE TECHNOLOGIE DE TROYES	UTT	FR	CLARC	39	67
	Ex	periment Pa	ortners (Call 2		
69	LEIBNIZ-INSTITUT FUER AGRARTECHNIK POTSDAM- BORNIM EV	АТВ	DE	САТСН	32	67
70	COMMUNICATIVE MACHINES	CMLabs	UK	CoCoMAPS	32	67
71	ICELANDIC INSTITUTE FOR INTELLIGENT MACHINES	IIIM	ICE	CoCoMAPS	32	67
72	INSTITUT DE RECHERCHE TECHNOLOGIQUE JULES VERNE	IRTJV	FR	FASTKIT	32	67
73	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE	CNRS	FR	DUALARMWORKER FASTKIT	32	67
74	UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA	UNIROMA1	IT	FlexSight	32	67
75	IT+ROBOTICS SRL	ITR	IT	FlexSight	32	67
76	ROBOX SPA	ROBOX	IT	FlexSight	32	67
77	VitiroverSAS	VITIROVER	FR	GRAPE	32	67
78	POLITECNICO DI MILANO	POLIMI	IT	GRAPE	32	67
79	UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE	UMH	ES	HOMEREHAB	32	67
80	ASOCIACION CENTRO TECNOLOGICO CEIT-IK4	CEIT-IK4	ES	HOMEREHAB	32	67
81	INSTEAD TECHNOLOGIES FOR HELPING PEOPLE SL	INSTEAD	ES	HOMEREHAB	32	67
82	FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA	IIT	IT	HyQ-REAL	32	67
83	MOOG CONTROLS LIMITED	MOOG	UK	HyQ-REAL	32	67
84	FUNDACION PARA LAS TECNOLOGIAS AUXILIARES DE LA AGRICULTURA	TECNOVA	ES	INJEROBOT	32	67
85	ROBOTNIK AUTOMATION SLL	ROB	ES	INJEROBOT	32	67
86	INGRO MAQUINARIA SL	ING	ES	INJEROBOT	32	67
87	INSTITUT MINES-TELECOM	TELECOM BRETAGNE	FR	KERAAL	32	67
88	GENERATION ROBOTS	GR	FR	KERAAL	32	67

89	CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE BREST	CHRU Brest	FR	KERAAL	32	67
90	ECA ROBOTICS	ECA	FR	MAX ES	32	67
91	ALUMINIUM PECHINEY	АР	FR	MAX ES	32	67
93	ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS	CERTH	GR	RadioRoSo	32	67
94	ANSALDO NUCLEAR ENGINEERING SERVICES LIMITED	Anslado NES	UK	RadioRoSo	32	67
95	STATNI USTAV RADIACNI OCHRANY v.v.i.	SURO	CZ	RadioRoSo	32	67
96	UNIVERSITA DEGLI STUDI DI GENOVA	UNIGE	IT	RadioRoSo	32	67
97	CESKE VYSOKE UCENI TECHNICKE V PRAZE	CVUT	CZ	RadioRoSo	32	67
98	UNIVERSITA DEGLI STUDI DI PARMA	UNIPR	IT	SAFERUN	32	67
99	Elettric 80 S.p.a.	E80	IT	SAFERUN	32	67
100	PRE GEL SPA	PG	IT	SAFERUN	32	67
101	RFND TECHNOLOGIES AB	REFIND	SE	AAWSBE1	32	67
102	FUNDACION TECNALIA RESEARCH & INNOVATION	TECNALIA	ES	DualArmWorker	32	67
103	AIRBUS OPERATIONS SL	AIRBUS	ES	DualArmWorker	32	67
104	WAGENINGEN UNIVERSITY	WU	NL	SAGA	32	67
105	AVULAR BV	AVU	NL	SAGA	32	67
106	ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA	UNIBO	IT	WIRES	32	67
107	UNIVERSITA DEGLI STUDI DELLA CAMPANIA LUIGI VANVITELLI	SUN	IT	WIRES	32	67
108	I.E.M.A. SRL	IEMA	IT	WIRES	32	67
109	STENA RECYCLING AS	STENA	DK	AAWSBE1	32	67

2 Use and dissemination of foreground

Results of the ECORD⁺⁺ dissemination activities are¹³:

- ECHORD⁺⁺ was presented 396 times during the runtime of the project in the press
- The ECHORD⁺⁺ webpage has 73,726 visitors in total
- 26 videos were published on the own YouTube channel with 1297 visitors on average
- The LinkedIn group has now 389 subscribers
- The twitter account has 1318 followers.

The number of press clippings (see Section A3: Press clippings) shows how impressive the project and mainly its scientific achievements were for the press. Only the number of references in the trade press missed the mark. The reason is that an EU project itself is no message for the readers of trade newspapers. Journalists writing for special interest magazines were often highly interested in the prototypes presented on fairs, e.g. the agricultural robots as CATCH or GAROTICS.

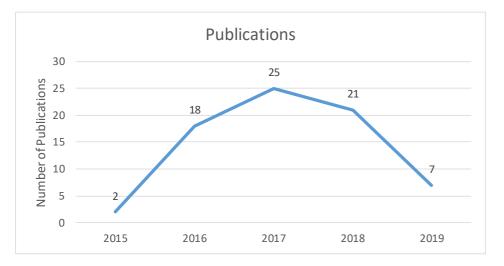
The ECHORD⁺⁺ website showed steadily increasing click numbers during the whole period. After the relaunch, it showed a more modern and attractive look, so the number of at least 1000 visitors per month could easily be topped. The content management system was changed from typo3 to wordpress due to the preference of the agency installing the new website.

Videos turned out to be a great success. They also outperformed the EU mark of more than 1000 visitors on average. This success is mainly traced back to the overwhelming visitor number of the GAROTICS video; more than 10,000 visitors had seen it in two and half year. In relation: the Riverwatch video of the old ECHORD, which was highly rated by the reviewers, gained more than 16,000 in five and a half years! It has to be remarked that videos have to have very professional today, that needs money. Another reason for high click rates are distinct names for the video: e.g. "Multimedia Report" will not win, but "GAROTICS" will.

LinkedIn is an international platform for business contacts, which means, it will not grow quickly, but consequently managed it will show a stable increase. This is the case with the ECHORD⁺⁺ LinkedIn group. The same is true for the twitter account that has more followers due to the easier way of communication. It is also very convenient in an international surrounding.

Dissemination measures took place right from the beginning of the project. Databases, social media channels and power point master slides were set up in the first period and even a PR workshop was organised for all partners. This was quite successful in the first run, but weakened in the end. Surprisingly the survey at the end of the project revealed that two third of the teams felt not well informed about doing PR for their experiment. That means that the workshops itself are helpful but should be repeated every year. Three quarters of the experiment partners have published information about the experiment in another language than English, stressing the importance of communication on local, regional and national level in the respective languages. Journalists are mostly interested in "local" (national in this context) news or in news, which has a direct impact on their own country and economy. The core consortium has only limited possibilities to fulfil this task, therefore the core consortium suggests involving local (meaning: none-core consortium) PR/marketing professionals either in every project team or via being part of a larger organization with a dedicated PR department

¹³ Status end of January 2019


or via involving an external agency. As already mentioned videos are not only a "nice to have" but moreover mandatory. To do that professionally a good funding for the whole runtime of a project is needed. More can be done in finding good and exact indexing of the videos uploaded. All other digital channels can be used to announce a new video.

To use the full possible impact of fairs and events they should be in one hand. Usually, the fair companies prefer to have only one contact person who then has full access to all PR possibilities a fair can provide. In this case, it is possible to organize e.g. talks in forums that are a good and cheap possibility to set themes in the target communities and to attract more visitors to the booth.

Some of the lessons learned from the project are probably easy and cheap to organize, but to tap the full potential of future projects' outreach activities a good and explicit funding is mandatory. Just to give an idea of how much money is needed: the 36-m^2 booth at Medica 2018 cost more than $10,000 \in$ just for the place without any booth construction.

SECTION A (Public)

As it was stated before, the impressive results that the experiments achieved, have been attained without forgoing the traditional scientific impact of research projects. The experiments had significant impact on the research community, which was reflected in a number of research publications including high impact journals and conferences. On **Fehler! Verweisquelle konnte nicht gefunden werden.** we can see the footprint of the research made by our experimental partners in the scientific society. Averaging more than 20 publications per year for the last three years, the expected results and impact for 2019 can only be prominent.

Figure 19 - Publications over the ECHORD⁺⁺ *runtime*

Section A1: List of scientific publications

					Sci	entific Paper	s or Jourr	nals Subi	nitted					
Experiments	No . of pa per	Title	Main author	Title of the journal or the serie	Numb er, date or frequ ency	Publisher	Place and Year of public ation	Rele vant page s	Op en acc ess (y/ n)	Did publi shed in open acces s journ al (y/n)	Did publis hed in open reposi tories (y/n)	lf not open access please explai n why.	Funding acknowled gemenet (y/n)	lf no please explai n why.
DEBUR	1	Robust 3D Object Model Reconstruct ion and Matching for Complex Automated Deburring Operations	A. Tellaech e	Journal of Imaging	2(1)	MDPI	2016	8	У	y	У		У	
EXOTrainer	8	Preliminary Assessment of a Compliant Gait Exoskeleto n	M. Cestari, D.Sanz- Merodio , and E. Garcia	Soft Robotics	Vol. 4, No. 2	N/A	2017	135- 146	n	n	У		y	

A New and Versatile Adjustable Rigidity Actuator with Add- on Locking Mechanism (ARES-XL)	M. Cestari, D.Sanz- Merodio , and E. Garcia	Actuators	Vol. 7, No. 1	N/A	2018	N/A	У	у	У	У	
Control architectur e of the ATLAS 2020 lower-limb active orthosis	, J. Sancho,	Int. Conf. Climbing and Walking Robots and the Support Technologi es for Mobile Machines	N/A	N/A	Londo n, UK, 2016	N/A	n	n	y	Ŷ	
Mechanica description of ATLAS 2020, A 10 DOF paediatric exoskeleto n	M. Perez, E. Garcia, D. Sanz- Merodio	Int. Conf. Climbing and Walking Robots and the Support Technologi es for Mobile Machines	N/A	N/A	Londo n, UK, 2016	N/A	n	n	У	y	

A wearable gait exoskeleto n for the daily life activity of children with SMA	E. Garcia, F. Jorge and M. Prieto	Cure SMA Internation al Conference	N/A	N/A	Los Angele s, USA, 2016	N/A	n	n	У	У	
Result of clinical trials with children with Spinal Muscular Atrophy using the ATLAS 2020 lower-limb active orthosis	D. Sanz- Merodio , M. Perez, M. Prieto, J. Sancho, and E. Garcia	20th Int. Conf. Climbing and Walking Robots and the Support Technologi es for Mobile Machines	N/A	N/A	Porto, Portug al, 2017	N/A	n	n	У	У	
ATLAS 2020: The pediatric gait exoskeleto n project	E. Garcia, J. Sancho, D. Sanz- Merodio , and M. Prieto	20th Int. Conf. Climbing and Walking Robots and the Support Technologi es for Mobile Machines	N/A	N/A	Porto, Portug al, 2017	N/A	n	n	y	Y	

		Wearable Pediatric Gait Exoskeleto n, a Feasibility Study	A. Ganguly , D. Sanz- Merodio , G. Puyuelo , A. Goñi, E. Garcés, and E. Garcia	IEEE/RSJ Internation al Conference on Intelligent Robots and Systems, IROS2018	N/A	N/A	Madri d, Spain, 2018	N/A	n	n	У	У	
GARotics	2	Robotic green asparagus selective harvesting	A. Leu, M. Razavi, L. Langstä dtler, D. Ristić- Durrant, H. Raffel, C. Schenck , A. Gräser, B. Kuhfuss	IEEE/ASME TRANSACTI ONS ON MECHATRO NICS	lssue 6, Volum e 22, Numb er 6	IEEE	2017	10	У	y	У	у	
		Roboter können Grünsparge lernte	Alexand er Mend	Spargel und Erdbeer Profi	3	Rheinisch er Landwirt schafts-	2017	3	У	У	У	У	Publis her was not a project

		güntiger machen				Verlag GmbH								partne r (comp onent suppli er)
	3	An "All- laser" Endothelial Transplant	Frances ca Rossi	Journal of Visualized experiment - JOVE	101		2015	e529 39	n	n	n	at the time of public ation open access was not manda tory	Ŷ	
LA-ROSES		A robotic platform for laser welding of corneal tissue	Frances ca Rossi	Proc. SPIE 10413, Novel Biophotoni cs Techniques and Application s IV	10413	SPIE	2017	1041 30B	n	n	n	publis her's licensi ng agree ment would not permit open access procee dings	У	

		Laser assisted robotic surgery in cornea transplanta tion	Frances ca Rossi	Progress in Biomedical Optics and Imaging - Proceeding s of SPIE	10056	SPIE	2017	1005 60T	n	n	n	publis her's licensi ng agree ment would not permit open access procee dings	Y	
	3	Analysis and synthesis of linwwc-vsa, a variable stiffness actuator for linear motion	G. Spagnuo Io	Mechanism and Machine Theory	vol. 110	Elsevier	2017	85- 99	n	n	n	no funds availab le to publis h in an open	У	
LINarm++		An affordable, adaptable, and hybrid assistive device for upper-limb neurorehab ilitation	M. Malosio	Journal of Rehabilitati on and Assistive Technologi es Engineering	Vol. 3	SAGE Publishin g	2016	1-12	У	У	n		Y	

		An unobtrusiv e measureme nt method for assessing physiologic al response in physical human- robot interaction	Blaž Jakopin	IEEE transactions on human- machine systems	N/A	IEEE	2017	474 - 485	n	n	y		Ŷ	
MARS	2	Managing a Mobile Agricultural Robot Swarm for a Seeding Task	Timo Blender	IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society	N/A	IEEE	Floren ce, Italy, 2016	6879 - 6886	n	n	n	publis her's licensi ng agree ment would not permit publis hing in a reposit ory	У	

		Motion Control for Omni-Drive Servicerobo ts under Kinematic Dynamic and Shape Constraints	Timo Blender	20th IEEE Conference on Emerging Technologi es and Factory Automatio n (ETFA)	N/A	IEEE	Luxem burg, 2015	1-8	n	n	n	publis her's licensi ng agree ment would not permit publis hing in a reposit ory	У	
MObile robo T for upper limb neurOrtho	3	MOTORE++ A Portable Haptic Device for Domestic Rehabilitati on	Lucia Saracino	The 42nd Annual Conference of IEEE Industrial Electronics Society, October 24-27, 2016	N/A	IEEE	2016	N/A	y	У	y		Ŷ	
Rehabilitat		Fusion of wearable sensors and mobile haptic robot for the assessment in upper	Lucia Saracino	IEEE Internation al Conference on Multisenso r Fusion and Integration	N/A	IEEE	2016	N/A	у	y	y		У	

		limb rehabilitati on		for Intelligent Systems (MFI).									
		Upper limb rehabilitati on after stroke using a portable haptic robotic device: preliminary results	Stefano mazzole ni	EMBC	N/A	N/A	2016	N/A	У	y	y	У	
MODUL	2	ANYmal - a highly mobile and dynamic quadruped al robot	M. Hutter	IEEE/RSJ Internation al Conference on Intelligent Robots and Systems (IROS)	N/A	IEEE	2016	38- 44	у	n	Ŷ	Ŷ	

		ANYmal - toward legged robots for harsh environme nts	M. Hutter	Advanced Robotics	vol 31, issue 17	Taylor & Francis	2017	918- 931	у	n	У		У	
	2	Sensor design and model- based tactile feature recognition	Veit Müller	IEEE Sensors	N/A	IEEE Xplore	Glasgo w and 25 Dece mber 2017	3	n	n	Ŷ		y	
pickit		A new Multi- Modal Approach towards reliable Bin- Picking Application	Veit Müller	ISR Conference	N/A	IEEE Xplore, Springer Verlag	Münc hen, Nov. 2016	6	n	n	У		У	
SAPARO	2	Safe Human- Robot Cooperatio n with high payload robots in industrial application S	Vogel, C.; Fritzsch e, M.; Elkmann , N.	Human- Robot Interaction (HRI), 11th Internation al Conference on,	N/A	N/A	New Zealan d, 07 10. March , 2016	N/A	n	n	n	lack of time and resour ces	У	

			Novel Safety Concept for Safeguardin g and Supporting Humans in Human- Robot Shared Workplaces with High- Payload Robots in Industrial Application S	Vogel, C.; Elkmann , N.	Human- Robot Interaction (HRI), 12th Internation al Conference on,	N/A	N/A	Vienn a, Austri a, 06 09. March , 2017	N/A	n	n	n	lack of time and resour ces	У	
		3	TIREBOT: a Collaborati ve Robot for the Tire Workshop	Alessio Levratti	Robotics and Computer Integrated Manufactiri ng	In press	Elsevier	In Press	In Press	у	у	у		у	
TIREBO	Т		TIREBOT: a Novel Tire Workshop Assistant Robot	Alessio Levratti	Proceeding s of the 2016 IEEE Internation al Conference on Advanced Intelligent	N/A	IEEE	2016	N/A	у	У	y		y	

				Mechatroni cs (AIM)									
		Safe Navigation and Experiment al Evaluation of a Novel Tire Workshop Assistant Robot	Alessio Levratti	Proceeding s of the IEEE Internation al Conference on Robotics and Automatio n (ICRA)	N/A	IEEE	2017	N/A	Ŷ	У	У	Ŷ	
	3	Automatic Detection of Field- Grown Cucumbers for Robotic Harvesting	Roemi Fernand ez	IEEE ACCESS	6	IEEE	2018	3551 2- 3552 7	У	y	У	y	
CATCH		Cucumber Detection for Precision Agriculture Application S	Roemi Fernand ez	Proceeding s of the 21th Internation al Conference CLAWAR 2018	Septe mber 10-12, 2018	ELSEVIER - CLAWAR ASSOCIA TION	Septe mber 10-12, 2018 Panam a	167- 174	у	y	У	y	

		Innovative Robo application : The CATCH Experiment (in german)	Dragolju b Surdilov ic	wt Werkstattst echnik WT- Online	H9	VDI	2017	600- 604	у	У	У	У	
DUALARM WORKER	1	A case study of automated dual-arm manipulati on in industrial application s (Submitted)	Corresp onding author: J. Cortés	N/A	N/A	N/A	2019	N/A	у	n	Y		
FASTKIT	6	Proceeding s of the Third Internation al Conference on Cable- Driven Parallel Robots	N/A	N/A	N/A	Springer	2017	рр. 268- 279	у	n	y	У	

		2018 IEEE Internation al Conference on Robotics and Automation (ICRA)	N/A	N/A	N/A	N/A	2018	N/A	У	n	У	У	
		Advances in Robot Kinematics	N/A	N/A	N/A	N/A	2018	N/A	у	n	У	Ŷ	
		Proceeding s of the ASME 2018 Internation al Design Engineering Technical Conference s & Computers and Information in Engineering Conference (IDETC/CIE)	August 26-29, 2018	N/A	N/A	N/A	2018, Quebe c City, QC., Canad a, .	N/A	У	n	Y	Y	
FlexSight	2	Robust Intrinsic and Extrinsic Calibration	F. Basso, E. Menega tti and	IEEE Transaction s on Robotics	N/A	IEEE	Vol: 34, Issue: 5, Oct. 2018	1315 - 1332	n	n	у	У	

		of RGB-D Cameras	A. Pretto											
		Learning from Successes and Failures to Grasp Objects with a Vacuum Gripper	L. Monorc hio, D. Evangeli sta, N. Imperoli , and A. Pretto	Proc. of the IROS 2018 Workshop "Task- Informed Grasping for rigid and deformable object manipulati on"	N/A	N/A	2018	N/A	y	У	У		У	
GRAPE	3	GRAPE: Ground Robot for vineyArd Monitoring and ProtEction	Ferran Roure, Germán Moreno , Marcel Soler, Davide Faconti, Daniel Serrano, Pietro Astolfi, Gianluca Bardaro, Alessan dro Gabrielli	Iberian Robotics conference	43061	Springer, Cham	2017	249- 260	n	n	n	the confer ence does not allow open access publis hing	y	

		, Luca Bascetta , Matteo Matteuc ci										
	Lessons Learned in Vineyard Monitoring and Protection from a GroundAut onomous Vehicle	Ferran Roure, Luca Bascetta , Marcel Soler, Matteo Matteuc ci, DavideF aconti, Jesus- Pablo Gonzale z and Daniel Serrano	N/A	N/A	Springer	2019	N/A	У	n	y	У	

		Vineyard autonomou s navigation in the Echord++ GRAPE Experiment	P. Astolfi, A. Gabrielli , L. Bascetta ,, M. Matteuc ci	16th IFAC Symposium on Information Control Problems in Manufacturi ng INCOM 2018	Annua l confer ence	Elsevier	2018	704- 709	n	n	n	the confer ence does not allow open access publis hing	У	
	5	Developme nt of a Robotic Device for Post-Stroke Home Tele- Rehabilitati on	I. Díaz	Advances in Mechanical Engineering	N/A	SAGE Journals	Januar y 2018	рр. 1-8	У	n	У		y	
HOMERE AB	H	Evaluation of an Upper-Limb Rehabilitati on Robotic Device for Home Use from Patient Perspective	J.M. Catalan	4th Internation al Conference on NeuroReha bilitation (ICNR2018)	N/A		Octob er 16- 20, 2018	pp. 449- 453	n	n	У		y	

	Patient evaluation of an upper-limb rehabilitati on robotic device for home use	J.M. Catalan	IEEE Internation al Conference on Biomedical Robotics and Biomechatr onics (BioRob)	N/A	N/A	Augus t 26- 29, 2018	рр. 450- 455	n	n	У	У	
	HOMEREHA B: Developme nt of Robotic Technology for Post- Stroke Home Tele- Rehabilitati on	L.D. Lledó	Jornadas Nacionales de Robótica, Spanish Robotics Conference	N/A	N/A	June 8-9, 2017	N/A	n	n	y	Ŷ	
	Robotic Technology for Post- Stroke In- Home Tele- Rehabilitati on	M. Chiurazz i	Internation al Workshop on Assistive & Rehabilitati on Technology (IWART)	N/A	N/A	Dece mber 14-16, 2016	рр. 17- 18	n	n	У	Ŷ	

HyQ-REAL	5	A Brief Overview of a Novel, Highly- Integrated Hydraulic Servo Actuator with Additive- Manufactu red Titanium Body	Claudio Semini	Workshop at IEEE IROS conferenc e	N/A	IEEE	2016	4 pag es	У	У	У	У	
		Highly- Integrated Hydraulic Smart Actuators and Smart Manifolds for High- Bandwidth Force Control	Victor Barasuo I	Frontiers in Robotics and Al	N. 51	Frontiers in	2018	N/A	У	У	У	У	

Heuristic Planning for Rough Terrain Locomotion in Presence of External Disturbanc es and Variable Perception Quality	Michele Focchi	Springer Track in Advanced Robotics series - ECHORD++ book	N/A	Springer	2018/ 2019	N/A	?	?	У	У	
Validation of Computer Simulations of the HyQ Robot	Marco Frigerio	CLAWAR conference proceeding s	N/A	World Scientific	2017	415- 422	у	n	У	Ŷ	
Viscosity- based Height Reflex for Workspace Augmentati on for Quadruped al Locomotion on Rough Terrain	Michele Focchi	IEEE IROS 2017 conference	N/A	IEEE	2017	N/A	У	n	У	У	

	7	Computatio nal Architectur e of a Robot Coach for Physical Exercises in Kinesthetic Rehabilitati on	NGUYE N Sao Mai	IEEE Internation al Symposium on Human and Robot Interactive Communic ation	N/A	IEEE	2016	N/A	n	n	У	Y	
Keraal		A humanoid robot for coaching patients for physical rehabilitati on exercises	NGUYE N Sao Mai	Asian Conference on Computer Aided Surgery	N/A	N/A	2016	N/A	у	n	y	у	
		Cognitive architectur e of a humanoid robot for coaching physical exercises in kinaestheti c rehabilitati on	NGUYE N Sao Mai	10th Internation al Workshop on Cognitive Robotics, in IROS	N/A	N/A	2016	N/A	У	n	y	Ŷ	

	THEPAU T Andre	Actualités en Médecine Physique et de Réadaptati on	1	N/A	2017	18- 19	n	n	У	У	
Assessment	DEVAN NE Maxime	Internation al Conference on Humanoid Robotics (Humanoid s)	N/A	IEEE-RAS	2017	N/A	y	n	у	У	
physical rehabilitati	DEVAN NE Maxime	IEEE IRC workshop on Collaborati on of Humans, Agents, Robots, Machines and Sensors	N/A	N/A	2018	N/A	У	n	У	У	

		Rééducatio n fonctionnel le assistée par robot humanoïde	THEPAU T Andre	Des robots au service des soignés, et des soignants.	N/A	Eres	2018	N/A	У	n	n	book chapte r	У	
MAX ES	1	МАХ тм	C.Merci er	La voix du Nord	daily	N/A	March 2017	N/A	у	у	У			
	3	Safety and efficiency manageme nt in LGV operated warehouse s	Marina Raineri	J. of Robotics and Computer- Integrated Manufactur ing	N/A	Elsevier	In press (2019)	N/A	у	у	У		У	
SAFERUN		Optimality criteria for the path planning of autonomou s industrial vehicles	Marina Raineri	Springer Track in Advanced Robotics series - ECHORD++: Innovation from LAB to MARKET	N/A	Springer	In press (2019)	N/A	У	n	n	lack of inform ation on open access,	Y	
		Online velocity planner for Laser Guided Vehicles subject to	Marina Raineri	The 2017 IEEE/RSJ Internation al Conference on Intelligent	N/A	IEEE	Vanco uver, Canad a, 2017	6178 - 6184	n	n	n	Open access not availab le	У	

		safety constraints		Robots and Systems (IROS 2017)										
	6	The WIRES Experiment : Tools and Strategies for Robotized Switchgear Cabling	Gianluca Palli	Procedia Manufactur ing	11	Elsevier	2017	355- 363	y	У	y		У	
WIRES		Integration of Robotic Vision and Tactile Sensing for Wire- Terminal Insertion Tasks	Daniele De Gregori o	IEEE Transaction s on Automatio n Science and Engineering	in press	IEEE	2018	N/A	n	n	n	no funds availab le to publis h in an open	У	
		Tactile- Based Manipulati on of Wires For Switchgear Assembly	Salvator e Pirozzi	IEEE/ASME TRANSACTI ONS ON MECHATRO NICS	in press	IEEE	2018	N/A	n	n	n	no funds availab le to publis h in an open	У	

	Design and Evaluation of Tactile Sensors for the Estimation of Grasped Wire Shape	Salvator e Pirozzi	IEEE Internation al Conference on Advanced Intelligent Mechatroni cs	July 3- 7	IEEE	2017	490- 496	n	n	n	publis her's licensi ng agree ment would not permit publis hing in a reposit ory	Ŷ	
	Let's take a Walk on Superpixels Graphs: Deformable Linear Objects Segmentati on and Model Estimation	Daniele De Gregori o	Asian Conference on Computer Vision	N/A	N/A	2018	N/A	n	n	n	publis her's licensi ng agree ment would not permit publis hing in a reposit ory	Ŷ	

		Automatize d Switchgear Wiring: An Outline of the WIRES Experiment Results	Gianluca Palli	Echord++ Scientific Book	N/A	Spinger	2018	N/A	n	n	n	publis her's licensi ng agree ment would not permit publis hing in a reposit ory	У	
--	--	---	-------------------	--------------------------------	-----	---------	------	-----	---	---	---	---	---	--

Section A2: List of dissemination activities

The dissemination activities are always a crucial point for European projects and especially to a European project with such a high impact as ECHORD++. The purpose of those dissemination activities is the creation of promoting material (websites, leaflets etc), the use of social media, the participation in conferences, seminars, workshops and other events and finally, the promotion of the project through press releases and articles published. On the figure 20 you can see the different ways that our partners chose to disseminate their project.

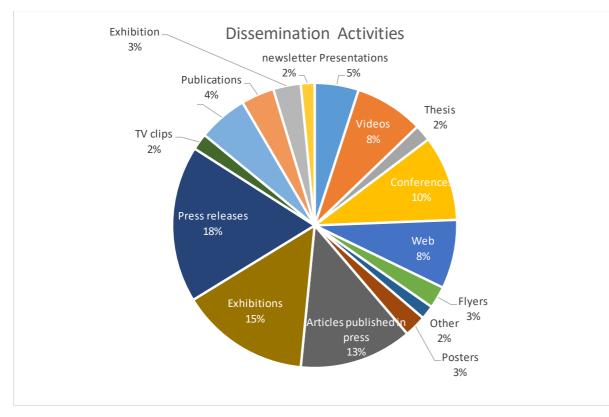


Figure 20 - Types of Dissemination activities from partners of Call 1 and Call 2

NO.	Type of activities ¹⁴	Main leader	Title	Date/Period	Place	Type of audience ¹⁵	Size of audience	Countries addressed
1	Other		ECHORD ⁺⁺ Kick-Off- Meeting	October 22, 2013	Paris			
2	Exhibition	UPC	Smart City Expo	November, 20 2013	Barcelona			
3	Presentation		Horizon 2020 Infoday	January 13, 2014	Luxembourg			
4	Presentation		Robotics in Horizon 2020	January 22, 2014	London			
5	Presentation		PCP Concertation Meeting	February 10, 2014	Brussels			
6	Other	SSSA	RIF Infoday	February 11, 2014	Pontedera			
7	Other	UPC	Barcelona Living Lab	February 21, 2014	Barcelona			
8	Other	SSSA	Evolution - Development - Innovation	March 7, 2014	Peccioli			
9	Conference	TUM	European Robotics Forum	March 12, 2014	Rovereto			
10	Poster	TUM	Industrial technologies	April 11, 2014	Athens			
11	Exhibition	TUM	RoboBusiness Europe	May 26, 2014	Billund			
12	Conference		IEEE International Conference on Robotics and Automation (ICRA)	June 1, 2014	Hongkong			
13	Exhibition	TUM	Automatica	June 3, 2014	Munich			

¹⁴ A drop down list allows choosing the dissemination activity: publications, conferences, workshops, web, press releases, flyers, articles published in the popular press, videos, media briefings, presentations, exhibitions, thesis, interviews, films, TV clips, posters, Other.

¹⁵ A drop down list allows choosing the type of public: Scientific Community (higher education, Research), Industry, Civil Socie ty, Policy makers, Medias, Other ('multiple choices' is possible).

14	Other	UPC	Science & Technology Party	June 14, 2014	Barcelona		
15	Presentation		I4MS	June 18	Berlin		
16	Exhibition	TUM	IAS13	July 15, 2014	Padova		
17	Other		Japan Academia Industry	September 24, 2014	Munich		
18	Conference		ICT Proposers Day	October 9, 2014	Florence		
19	Other	BRL	RIF Info Day	October 23, 2014	Bristol		
20	Other	BRL	RIF Info Day	October 24, 2014	Bristol		
21	Presentation	TUM	fortiss	October 28, 2014	Munich		
22	Exhibition	TUM	MEDICA	November 12, 2014	Düsseldorf		
22	Exhibition	UPC	Smart City Expo	November 18, 2014	Barcelona		
23	Other	BRL	RIF Opening	November 26, 2014	Bristol		
24	Other	TUM	Market consultation day – PCP Pilot in healthcare	December 3, 2014	Munich		
25	Other	CEA	RIF Opening	January 14, 2015	Paris-Saclay		
26	Other	SSSA	RIF Opening	February 9, 2015	Peccioli		
27	Exhibition	UPC	RoboBusiness Europe	April 27, 2015	Milan		
28	Other	BRL	BBC Panorama	August 26, 2015	Bristol		
29	Conference	BRL	Smart Agriculture Conference	September 8, 2015	Birmingham		
30	Exhibition	BRL	Venture Fest Wales	September 29, 2015	Cardiff		
31	Conference	BRL	FT Future of Manufacturing	September 30, 2015	London		
32	Conference/Workshop	UPC	IROS	October 2, 2015	Hamburg		
33	Exhibition	UPC	Smart City Expo	November 17, 2015	Barcelona		
34	Other		euRobotics Brokerage Day	November 18, 2015	Brussels		
35	Other	BRL	STEM Mas-terclass	January 12, 2016	Bristol		
36	Workshop	BRL	Business Workshop. Introduction to Mechatronics	January 21, 28, March 17, 24, 2016	Bristol		

37	Other	BRL	Presentation of the RIF to the Welsh Government	February 1, 2016	Bristol	
38	Other	BRL	SME Day (FET)	February 24, 2016	Bristol	
39	Other	BRL	ESTnet Awards	March 2, 2016	Cardiff	
40	Workshop	BRL	Workshop: Introduction to Robots	March 3, 2016	Bristol	
41	Other	BRL	British Science Week	March 11, 2016	Bristol	
42	Exhibition	BRL	Venture FEST East Midlands	March 16, 2016	Leicester	
43	Exhibition	TUM	bauma	April 11, 2016	Munich	
44	Presentation	BRL	MOD Presentation	April 15, 2016	Filton	
45	Exhibition	TUM	Hannover Messe	April 25, 2015	Hannover	
46	Other	BRL	Glos Business Show	May 18, 2016	Cheltenham	
47	Exhibition	UPC	Innorobo	May 24, 2016	Paris	
48	Exhibition	TUM	RoboBusiness Europe	June 1, 2016	Odense	
49	Other	UPC	Festa de la Ciencia	June 18, 2016	Barcelona	
50	Exhibition	UPC	Automatica	June 21, 2016	Munich	
51	Other	SSSA	ForItAAL Summer School	June 2016	Peccioli	
52	Other	BRL	Science Museum Robot Show	July 4, 2016	London	
53	Other	UPC	EFTA	September 6, 2016	Berlin	
54	Exhibition	BRL	Venturefest Wales	September 28, 2016	Cardiff	
55	Conference	UPC	IROS	October 9, 2016	Daejon	
56	Other	BRL	Venturefest South West	October 18, 2016	Exeter	
57	Exhibition	UPC	Smart City Expo	November 17, 2016	Barcelona	
58	Workshop	SSSA	Italian-Japanese Workshop	November 2016	Peccioli	
59	Workshop	SSSA	Workshop with ARtex	December 2016	Peccioli	

60	Exhibition	UPC	Global Robot Expo	February 2, 2017	Madrid	
61	Conference	SSSA	European Robotics Forum	March 22, 2017	Edinburgh	
62	Exhibition	TUM	Hannover Messe	April 24, 2017	Hannover	
63	Exhibition	UPC	EC Committee of Regions	May 10, 2017	Brussels	
64	Exhibition	UPC	Innorobo	May 15, 2017	Paris	
65	Workshop	UPC	Festa de la Ciencia	May 27, 2017	Barcelona	
66	Conference	UPC	FIABCI 2017	May 28, 2017	Andorra	
67	Presentation	TUM	ECHORD ⁺⁺ at IIT	July 31, 2017	Genoa	
68	Exhibition	SSSA	International Robotics Festival	September 7, 2017	Pisa	
69	Presentation	RUR	Hubs, Platforms and Pilots in Horizon 2020	September 14, 2017	Oslo	
70	Conference	UPC	IROS 2017	September 25, 2017	Vancouver	
71	Exhibition	UPC	Smart City Expo	November 14, 2017	Barcelona	
72	Other	UPC	European Robotics Week	November 20, 2017	Brussels	
73	Conference	UPC	European Robotics Forum	March 13, 2018	Tampere	
74	Exhibition	UPC	Automatica	June 19, 2018	Munich	
75	Conference	UPC	IROS	October 1, 2018	Madrid	
76	Exhibition	TUM	GovTech Summit	November 12, 2018	Paris	
77	Exhibition	TUM	MEDICA	November 12, 2018	Düsseldorf	
78	Exhibition	UPC	Smart City Expo	November 13, 2017	Barcelona	
79	Conference	TUM	DIH annual event	November 27, 2018	Warsaw	
80	Conference	UPC	European Robotics Forum	March 20, 2019	Bucharest	

Section A3: Press clippings

Medium	Туре	Date	Торіс	Country	trade press	initiated by
www.bcn.cat	Website	19/11/2013	Smart City Expo/UPC	Spain		core consortium
www.regiondigital.com	Website	21/11/2013	Smart City Expo/UPC	Spain		core consortium
www.digitalextremadura.com	Website	21/11/2013	Smart City Expo/UPC	Spain		core consortium
Ansa	Newsagency	12/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
agronotizie.imagelinenetwork.com	Website	12/02/2014	General Information on project and SSSA/Infoday	Italy	x	core consortium
ll Tirreno	Newspaper	12/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
www.controcampus.it	Website	12/02/2014	General Information on project and SSSA/Infoday	Italy	х	core consortium
pisainformaflash.it	Website	12/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
GoNews.it	Website	12/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
Pagina Q - La pagina quotidiana Pisa	Newspaper	12/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
La Nazione Pontedera	Newspaper	13/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
Il Tirreno Pontedera	Newspaper	13/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
Pisatoday.it	Website	13/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
QuiNewsvaldera.it	Website	13/02/2014	General Information on project and SSSA/Infoday	Italy		core consortium
robohub.org	Website	04/03/2014	Fist call for experiments	Switzerland	x	core consortium
www.zombieslounge.com	Website	10/03/2014	First call for experiments	India	х	core consortium
http://www.roboticstoday.com	Website	20/08/2014	Automatica video	Netherlands	x	core consortium
http://spectrum.ieee.org	Website	22/08/2014	Automatica video	USA	х	core consortium
robohub.org	Website	22/08/2014	Automatica video	Switzerland	x	core consortium

http://www.33rdsquare.com	Website	22/08/2014	Automatica video	USA	х	core consortium
http://futurescope.co	Website	26/08/2014	Automatica video	Germany	x	core consortium
http://robotenomics.com	Website	26/08/2014	Automatica video	USA	x	core consortium
El periodico de Catalunya	Newspaper	17/11/2014	PDTI urban robotics	Spain		core consortium
http://www.elperiodicomediterraneo.com/noticias/sociedad/nu evos-robots-municipales_905308.html	Newspaper	17/11/2014	PDTI urban robotics	Spain		core consortium
http://www.lavozdigital.es/agencias/20141117/economia/coch es-hibridos-robotica-redes-inteligentes_201411171903.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.presspeople.com/nota/upc-presenta-solucions- intel-ligents-per	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.expansion.com/agencia/efe/2014/11/17/20127333 .html	Website	17/11/2014	Smart City Expo/UPC	Spain	x	core consortium
http://www.eldiariomontanes.es/agencias/201411/17/coches- hibridos-robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.finanzas.com/noticias/empresas/20141117/coches- hibridos-robotica-redes-2807284.html	Website	17/11/2014	Smart City Expo/UPC	Spain	x	core consortium
http://www.lavanguardia.com/vida/20141117/54419960471/co ches-hibridos-robotica-y-redes-inteligentes-en-el-salon-smart- city-2014.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.lasprovincias.es/agencias/201411/17/coches- hibridos-robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.elcorreo.com/agencias/201411/17/coches- hibridos-robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.ideal.es/agencias/20141117/economia/coches- hibridos-robotica-redes-inteligentes_201411171903.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.elconfidencial.com/ultima-hora-en-vivo/2014-11- 17/coches-hibridos-robotica-y-redes-inteligentes-en-el-salon- smart-city-2014_420851/	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.larioja.com/agencias/201411/17/coches-hibridos- robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.diariosur.es/agencias/201411/17/coches-hibridos- robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.diariovasco.com/agencias/201411/17/coches- hibridos-robotica-redes-242681.html	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium

http://noticias.lainformacion.com/economia-negocios-y- finanzas/transporte-por-carretera/coches-hibridos-robotica-y- redes-inteligentes-en-el-salon-smart-city- 2014_mdZdWpZFhhUIvXBKSxmyv/	Website	17/11/2014	Smart City Expo/UPC	Spain		core consortium
http://locampusdiari.com/arxius/26330	Website	18/11/2014	Smart City Expo/UPC	Spain	х	core consortium
http://energuia.com/2014/11/coches-hibridos-robotica-y-redes- inteligentes-en-el-salon-smart/	Website	18/11/2014	Smart City Expo/UPC	Spain	x	core consortium
http://www.naciodigital.cat/latorredelpalau/noticia/37203/upc/ presenta/seus/projectes/al/smart/city/expo/world/congress	Website	18/11/2014	Smart City Expo/UPC	Spain		core consortium
http://www.catalunyavanguardista.com/catvan/la-ciudad-del- futuro/	Website	18/11/2014	Smart City Expo/UPC	Spain		core consortium
https://elpais.com/ccaa/2014/11/18/catalunya/1416329905_27 8937.html	Newspaper	18/11/2014	Smart City Expo/UPC	Spain		core consortium
Diari de Terassa	Newspaper	20/11/2014	Smart City Expo/UPC	Spain		core consortium
http://btv.cat/btvnoticies/2014/11/20/robotica-inspeccio- clavegueram-smart-city/	TV	20/11/2014	PDTI urban robotics	Spain		core consortium
http://www.compromisorse.com/rse/2014/11/20/6-soluciones- inteligentes-para-la-ciudad-del-futuro/	Website	20/11/2014	Smart City Expo/UPC	Spain	x	core consortium
http://www.dggeriatrie.de/home-54/aktuelle-meldungen/890- oeffentliche-ausschreibung-foerdergelder-fuer-robotereinsatz- in-der-geriatrie.html	Website	22/11/2014	PDTI healthcare call	Germany	х	core consortium
http://www.roboticstoday.com/News/echord-integrates-public- bodies-3087	Website	24/11/2014	Market consultation PDTI	Netherlands	x	core consortium
http://cadenaser.com/emisora/2014/11/25/radio_barcelona/14 16909234_461294.html	radio	25/11/2014	PDTI urban robotics	Spain		core consortium
http://www.swinnovation.co.uk/2014/11/bristol-robotics- innovation-facility-opens-support-small-companies/	Website	27/11/2014	RIF@BRL launch	United Kingdom	х	core consortium
https://www.youtube.com/watch?v=Gv8BBCS2WFA	TV	08/12/2014	LA-ROSES experiment	Italy		experiment
http://exotrainer.weebly.com/uploads/5/0/2/1/50217627/p%C 3%A1ginas_desdeadjacentgovernment_health_february_2015.p df	Newsletter	01/02/2015	EXOTrainer Experiment	Spain	х	experiment
iltirreno.gelocal.it	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
ansa.it	News agency	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.firenzepost.it/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.tiscali.it/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
ilsecoloxix.it	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.agenziaitalia.it	News agency	16/02/2015	MOTORE** experiment	Italy		experiment

corriere.it	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
toscanatv.com	TV	16/02/2015	MOTORE** experiment	Italy		experiment
goNews.it	News website	16/02/2015	MOTORE** experiment	Italy		experiment
notizie.virgilio.it	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
Controradio	Radio	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
http://www.pisainformaflash.it/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
intoscana.it	News website	16/02/2015	MOTORE** experiment	Italy		experiment
ilsitodifirenze.it	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
italyNews.it	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
it.notizie.yahoo.com	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
Quotidiano di Ragusa e dintorni	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
La Prima Pagina - Toscana	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.gazzettadifirenze.it/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
La Stampa	Newspaper	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.quiNewsvolterra.it/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
Il Corriere di Puglia e Lucania	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
Pisa Today	News website	16/02/2015	MOTORE** experiment	Italy		experiment
Agenzia Impress	News agency	16/02/2015	MOTORE** experiment	Italy		experiment
N24G - News24Games	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy	х	experiment
ilmeteo.it	News website	16/02/2015	MOTORE** experiment	Italy		experiment
datamanager.it	News website	16/02/2015	MOTORE** experiment	Italy	х	experiment
http://nextme.it/	News website	16/02/2015	MOTORE** experiment	Italy	х	experiment
adnkronos	News website	16/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
http://www.telemeditalia.it/it/ej- tecsanitar/content/entry/0/179/3596/motore-il-robot-per-la- riabilitazione-a-domicilio.html#.VqiPMlnQgsQ	News website	16/02/2015	MOTORE** experiment	Italy	x	experiment
http://247.libero.it/focus/31723697/0/robot-per-la-fisioterapia- a-domicilio/	News website	16/02/2015	MOTORE** experiment	Italy		experiment
http://www.futuraera.it/motore-il-robot-per-la-fisioterapia-a- domicilio/	News website	19/02/2015	MOTORE** experiment	Italy	x	experiment
http://www.panorama.it/scienza/salute/robot-per- riabilitazione-domicilio-dopo-ictus/	Magazine	20/02/2015	MOTORE** experiment	Italy		experiment
Il messagero	Newspaper	25/02/2015	MOTORE ⁺⁺ experiment	Italy		experiment
http://www.corrierecomunicazioni.it/it-world/32834_e-health- arriva-il-motore-per-la-riabilitazione-post-ictus.htm	News website	02/03/2015	MOTORE** experiment	Italy	x	experiment

https://www.key4biz.it/robot-domestici-ed-industriali-18-22- marzo-competizione-internazionale-a-pisa/	Website	16/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy	x	core consortium
http://www.goNews.it/2015/03/17/il-contest-dei-robot-con- rockin-si-sfideranno-sei-gruppi-di-ricercatori/	Website	17/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.quiNewsvaldera.it/la-guerra-dei-robot-e-alla-casa- domotica.htm	Website	17/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.corriereuniv.it/cms/2015/03/sfida-di-robot- nellarena-di-pisa/	Website	18/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.goNews.it/2015/03/18/inizia-il-primo-talent-dei- robot-automi-in-gara-per-dimostrare-chi-sara-il-migliore/	Website	18/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.ilcuoioindiretta.it/dalla-provincia/item/38652-nel- pisano-primo-talent-dei-robot.html	Website	18/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://iltirreno.gelocal.it/pontedera/cronaca/2015/03/18/News /alla-casa-domotica-il-primo-talent-con-i-robot-protagonisti- 1.11069978	Newspaper	18/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.diregiovani.it/home-diregiovani/39070-rockin- contest-robot-domotica-pisa-santanna.dg	Website	19/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy	x	core consortium
www.legnostorto.com/anche-i-robot-hanno-il-loro-talent- 15749.html	Website	19/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy		core consortium
http://www.wired.it/scienza/lab/2015/03/20/competizione- italiana-robot/	Magazine	19/03/2015	RoCKIn event at RIF@Pisa- Peccioli	Italy	x	core consortium
http://www.ehealthNews.eu/open-calls/4319-funding- opportunity-comprehensive-geriatric-assessment-cga	Website	06/05/2015	PDTI healthcare call	Germany	x	core consortium
http://www.b4bschwaben.de/nachrichten/kaufbeuren- ostallgaeu_artikel,-AGCO-entwickelt-MARS-Roboter-fuer-die- Landwirtschaftarid,145944.html	Website	06/05/2015	start of MARS experiment	Germany	x	experiment
http://www.ballensilage.com/dateien/aktuell_2382.html	Website	09/05/2015	start of MARS experiment	Germany	х	experiment
http://www.reussir91.com/actualites-breves	Website	11/05/2015	Second call for experiments	France	x	core consortium
http://www.n24.de/n24/Mediathek/videos/d/6754606/am- roboter-geht-kein-weg-vorbei.html	TV	04/06/2015	Safe Human Robot Cooperation - SAPARO	Germany		experiment
http://www.sienafree.it/economia-e-finanza/264-economia-e- finanza/74109-ihimer-spa-e-imer-group-alla-smau-di-firenze	Newspaper	08/06/2015	2F Experiment	Italy		experiment
http://techspark.co/event/an-introduction-to-mechatronics- day-two/	Website	26/06/2015	BRL workshop	United Kingdom	x	core consortium

http://www.ulm-News.de/weblog/ulm- News/view/dt/3/article/43545/Roboterschwaerme_auf_schwae bischen_Feldern.html	Website	30/06/2015	start of MARS experiment	Germany		experiment
http://www.augsburger-allgemeine.de/neu-ulm/Statt- Traktoren-sollen-bald-Roboter-ueber-die-Felder-rollen- id34793902.html	Newspaper	15/07/2015	MARS experiment	Germany		experiment
http://www.eeweb.com/websites/echord	Website	20/07/2015	General Information on project	USA	x	core consortium
http://exotrainer.weebly.com/media.html	TV	26/07/2015	EXOTrainer Experiment	Spain		experiment
http://www.20minutos.es/noticia/2522757/0/exoesqueleto- bionico/ninos-paraplejicos/levantarse-caminar/	Newspaper	28/07/2015	EXOTrainer Experiment	Spain		experiment
http://www.rtve.es/alacarta/videos/telediario/innovador- exoesqueleto-permitira-caminar-ninos-paraplejia/3231327/	TV	28/07/2015	EXOTrainer Experiment	Spain		experiment
Antenne 1	Radio	29/07/2015	MARS experiment	Germany		experiment
http://www.smartandhealth.com/index.php/homepage-2/95- talent/220-innovacion-bionica-calidad-vida	Website	22/09/2015	EXOTrainer Experiment - Interview with Elena Garcia	Spain	x	experiment
http://www.crit-research.it/events/sinergie-regionali-e-progetti- finanziati-storie-di-successo/?unlocked=7131	News website	22/09/2015	TIREBOT experiment	Italy	x	experiment
http://www.pneurama.com/it/rivista_articolo.php/Corghi-vince- con-l-innovazione-?ID=23273	Magazine	29/09/2015	TIREBOT experiment	Italy	x	experiment
http://www.unindustriareggioemilia.it	website	29/09/2015	TIREBOT experiment	Italy	х	experiment
Emilianet	News website	30/09/2015	TIREBOT experiment	Italy	х	experiment
Gazzetta di Reggio	Newspaper	30/09/2015	TIREBOT experiment	Italy		experiment
Prima Pagina Reggio	Newspaper	30/09/2015	TIREBOT experiment	Italy		experiment
GripNews.it	News website	30/09/2015	TIREBOT experiment	Italy	х	experiment
http://www.hs- ulm.de/en/nocache/org/kom/MedienPublikationen/kompaktJo urnalundNewsletter/_docs/KOMPAKT01_2015.pdf	Magazine	01/10/2015	MARS experiment	Germany	x	experiment
http://www.pneusNews.it/2015/10/02/corghi-linnovazione-e- vincente/	News website	02/10/2015	TIREBOT experiment	Italy	x	experiment
http://www.notiziariomotoristico.com/News/6775/attrezzature -corghi-dove-linnovazione-e-di-casa	News website	15/10/2015	TIREBOT experiment	Italy	x	experiment
http://www.quiNewsvaldera.it/peccioli-sulla-fila-spunta-un- robot-da-150mila-euro.htm	Newspaper	07/11/2015	Dual arm robot @ SSSA	Italy		core consortium
http://www.bloomberg.com/News/articles/2015-11-11/robots- now-punch-people-to-make-tomorrow-s-machines-safer	News website	11/11/2015	Safe Human Robot Cooperation - SAPARO	USA	x	experiment

http://www.bristolhealthpartners.org.uk/latest- News/2015/11/18/how-will-robots-change-our-lives/468	website	18/11/2015	How will robots change our lives?	UK	х	core consortium
http://www.naciodigital.cat/noticia/98363/cinc/exemples/fer/s mart/ciutats/pre	News website	18/11/2015	Smart City World Congress 2015	Spain		core consortium
La Vanguardia	Newspaper	19/11/2015	Smart City World Congress 2016	Spain		core consortium
http://robohub.org/robots-at-erw2015-from-imagination-to- market/	News website	27/11/2015	RIF@BRL	Switzerland	x	core consortium
http://www.bristol247.com/channel/business/features- 3/sector-spotlight/sector-spotlight-robotics	News website	14/12/2015	BRL - RIF - ECHORD++	UK		core consortium
http://www.beprdigital.de/	Magazine	01/01/2016	SAPARO experiment	Germany	x	experiment
http://www.33rdsquare.com/2016/01/reinhard-lafrenz-named- new-secretary.html	News website	29/01/2016	Reinhard's leave	USA	x	core consortium
http://www.roboticstoday.com/News/reinhard-lafrenz-named- new-secretary-general-of-eurobotics-3133	News website	29/01/2016	Reinhard's leave	Netherlands	x	core consortium
http://industrialupdates.com/2016/02/05/eurobotics-appoints- new-secretary-general/#	News website	05/02/2016	Reinhard's leave	United Kingdom	х	core consortium
http://i2mfactory.com/2016/02/16/i2m-factory-lancia-la- piattaforma-echord/	website	16/02/2016	Relaunch ECHORD ⁺⁺ website	Italy	х	core consortium
www.swp.de/ulm/lokales/ulm_neu_ulm/Roboter-saeen-den- Mais;art4329,3708965	Newspaper	01/03/2016	MARS experiment	Germany		experiment
http://roboticsandautomationNews.com/tag/echord/	News website	02/03/2016	Start of PDTI	United Kingdom	x	core consortium
http://cordis.europa.eu/News/rcn/131255_en.html	News website	03/03/2016	Start of PDTI	Belgium	х	core consortium
http://spectrum.ieee.org/automaton/robotics/humanoids/video -friday-watson-support-group-for-robots-russian-humanoid- anymal-quadruped	News website	04/03/2016	Anymal/MODUL	USA	x	experiment
http://robohub.org/a-new-quadrupedal-robot-the-anymal/	News website	04/03/2016	Anymal/MODUL	Switzerland	x	experiment
http://roboticsandautomationNews.com/2016/03/07/billion- dollar-brain-exclusive-interview-with-professor-alois- knoll/3263/	News website	07/03/2016	Interview with Alois Knoll	United Kingdom	x	core consortium
https://www.produktion.de/abonnement/heftarchiv/ausgabend etail/heft/produktion-2016-12.html?epaperPage=8	Magazine	23/03/2016	So schützen Sie Ihre Mitarbeiter vor Robotern - SAPARO	Germany	x	experiment
VDI Nachrichten	Newspaper	15/04/2016	MARS experiment	Germany	х	experiment

https://ec.europa.eu/digital-single-market/en/node/81845	website	22/04/2016	Hannover Messe	Belgium		core consortium
Echo & Citizen	Newspaper	11/05/2016	RIF Bristol @ Glos Biz Show	υκ		core consortium
http://www.mmf.dk/nyheder/nyheder/robotter-skal-sortere- miljoefarligt- affald_48832&OpointData=6721cec1f9135c122c6b65c63f8e6ef aJmlkX3NpdGU9NjA3NiZpZF9hcnRpY2xIPTE0MDYmaWRfdXNlcj0 yODQwJmlkX2FwcGxpY2F0aW9uPTEwMDAzNTkmbGFuZz1lbg==	Newspaper	11/05/2016	AAwsbe	Denmark	x	
South West Business Insider	website	18/05/2016	Start-up Support - Case Study	υκ	x	core consortium
Medical Xpress	website	18/05/2016	Start-up Support - Case Study	ИК	х	core consortium
BBC Points West	TV	20/05/2016	Walk To Beat	UK		core consortium
http://www.quotidianoentilocali.ilsole24ore.com/art/sviluppo- e-innovazione/2016-05-19/smart-city-opportunita-ue- affrontare-sfide-urbane-tecnologie-robotiche- 174450.php?uuid=ABy97QJB	Newspaper	20/05/2016	PDTI healthcare	Italy	x	core consortium
Zee News	website	22/05/2016	Start-up Support - Case Study	India		core consortium
http://www.robobusiness.eu/rb/end-user-driven-development- and-implementation-of-healthcare-robots/	News website	24/05/2016	PDTI healthcare	Denmark	x	core consortium
Care Appointments	website	27/05/2016	Start-up Support - Case Study	υκ	х	core consortium
The Independent	Newspaper	01/06/2016	Start-up Support - Case Study	ИК		core consortium
https://issuu.com/stadtbuero/docs/greta_1606?e=0	Magazine	01/06/2016	Robots and politics	Germany	х	core consortium
South West Business Insider	Magazine	01/06/2016	Start-up Support - Case Study	υκ	х	core consortium
https://www.roboticsbusinessreview.com/top_5_reasons_why_ european_robotics_thrives_in_denmark/	Magazine	05/06/2016	Top 5 Reasons Why European Robotics Thrives in Denmark	USA	x	core consortium
https://www.roboticsbusinessreview.com/top_5_reasons_why_ european_robotics_thrives_in_denmark/	Magazine	05/06/2016	Robotics in Denmark	USA	x	core consortium
http://www.profi.de/News/MARS-Mission-in-der-Landtechnik- 1808722.html	Magazine	06/06/2016	start of MARS experiment	Germany	х	experiment

http://www.csic.es/home?p_p_id=contentviewerservice_WAR_ alfresco_packportlet&p_p_lifecycle=1&p_p_state=maximized&p _p_mode=view&p_p_col_id=column-1- 1&p_p_col_count=1&_contentviewerservice_WAR_alfresco_pac kportlet_struts_action=%2Fcontentviewer%2Fview&_contentvie werservice_WAR_alfresco_packportlet_nodeRef=workspace%3 A%2F%2FSpacesStore%2Fc466b086-98bc-48d6-8bfc- d44144f6712d	TV	06/06/2016	Exotrainer	Spain		experiment
http://www.abc.es/sociedad/abci-primer-exoesqueleto-para- ninos-4931606306001-20160608020017_video.html	Newspaper	08/06/2016	Exotrainer	Spain		experiment
http://www.elmundo.es/salud/2016/06/08/575837e8ca474103 078b459c.html	Newspaper	08/06/2016	Exotrainer	Spain		experiment
http://www.antena3.com/noticias/salud/crean-el-primer- exoesqueleto-del-mundo-dirigido-a-ninos-con-atrofia-muscular- espinal_20160608575855524beb2879e2e76079.html	τv	08/06/2016	Exotrainer	Spain		experiment
http://www.europapress.tv/sociedad/314406/1/csic-crea- exoesqueleto-ninos-atrofia-muscular.html	Newsagency	08/06/2016	Exotrainer	Spain		experiment
https://www.youtube.com/watch?v=tspkkoAHumM&feature=y outu.be	Newsagency	09/06/2016	Exotrainer	China		experiment
http://www.lasexta.com/programas/mas-vale- tarde/noticias/los-investigadores-necesitan-financiacion-para- que-el-exoesqueleto-pueda-llegar-a-los- ninos_20160609575990636584a83e36a9ac0d.html	TV	09/06/2016	Exotrainer	Spain		experiment
http://www.digitaltrends.com/cool-tech/exoskeleton-children/	News website	10/06/2016	Exotrainer	USA	х	experiment
http://www.canalsur.es/television/programas/enred/detalle/32 0.html?video=879385	TV	14/06/2016	PDTI sewer: SIAR robot	Spain		PDTI consortium
http://www.gizmodo.com.au/2016/06/here-is-the-worlds-first- exoskeleton-for-children/	News website	15/06/2016	Exotrainer	Austrailia	x	experiment
http://uk.businessinsider.com/robotic-exoskeleton-disabled- children-walk-spain-spinal-muscular-atrophy-2016-6?IR=T	News website	15/06/2016	Exotrainer	UK	x	experiment
https://www.youtube.com/watch?v=UYAep0WRVhE	podcast	23/06/2016	Echord** @ Automatica 2016	Germany	x	core consortium
La Sexta Noche	TV	26/06/2016	Exotrainer	Spain		experiment
http://www.sueddeutsche.de/wirtschaft/roboter-ferngesteuert- 1.3062945	Newspaper	04/07/2016	KUKA Übernahme von Midea	Germany		experiment
http://www.20min.ch/wissen/News/story/ETH-Roboter-kann- Bomben-entschaerfen-21660237	Newspaper	06/07/2016	Anymal/MODUL	Switzerland		experiment

Tagblatt.ch	Newspaper	08/07/2016	Anymal/MODUL	Switzerland		experiment
http://www.hisparob.es/?q=content/drones-para-inspeccionar- las-alcantarillas	News website	11/07/2016	ARSI	Spain	x	PDTI consortium
http://marcaespana.es/en/News/society/first-exoskeleton- children-spinal-muscular-atrophy-has-been-created-spain	News website	25/07/2016	Exotrainer	Spain		experiment
http://www.basellandschaftlichezeitung.ch/leben/leben/die- eth-forscht-an-einem-roboter-fuer-die-drecksarbeit-130479872	Newspaper	11/08/2016	Anymal/MODUL	Switzerland		experiment
https://www.ke-next.de/videos/wie-roboterschwaerme-die- landwirtschaft-veraendern-sollen-202.html	News website	18/08/2016	MARS experiment	Germany	х	experiment
http://agendaempresa.com/74784/15-anos-trabajando-juntos- por-la-innovacion-al-servicio-de-la-agroindustria/	Newsagency	26/08/2016	INJEROBOTS experiment	Spain		experiment
http://viewer.getpixelbook.com/issue/fe8c96c46745af4a82c08f d87784c08b/pixelbook-com-tecnichenuove-ortopediciesanitari- os-2016-006	Magazine	01/09/2016	LINARM** experiment	Italy	х	experiment
http://www.freshplaza.es/print.asp?id=100159	News website	07/09/2016	INJEROBOTS experiment	Spain	х	experiment
https://joseantonioarcos.es/2016/09/08/tecnova-robots- agricultura/	website	08/09/2016	INJEROBOTS experiment	Spain	х	experiment
TechSpark	website	30/09/2016	FutureSpace Incubator	UK		core consortium
http://www.srf.ch/play/tv/kultur/video/srf-menschmaschine-iii- exoskelette-und-human-upgrading?id=e3cee52f-bc69-4e42- 915c-74cbc81d26cd	τv	08/10/2016	Anymal/MODUL	Switzerland		experiment
http://cordis.europa.eu/News/rcn/135935_en.html	News website	19/10/2016	SAGA experiment	Belgium	х	experiment
http://robohub.org/swarms-of-precision-agriculture-robots- could-help-put-food-on-the-table/	News website	21/10/2016	SAGA experiment	Switzerland	х	experiment
http://www.sueddeutsche.de/karriere/echord-vom-labor-auf- den-markt-1.3210467	Newspaper	21/10/2016	ECHORD/ECHORD**	Germany		core consortium
http://www.elektroniknet.de/automation/sonstiges/artikel/135 133/	News website	26/10/2016	Experiments/RIFs	Germany	х	core consortium
https://www.elektroniknet.de/markt-technik/automation/die- besten-roboter-experimente-135133.html	Magazine	26/10/2016	ECHORD**	Germany	х	
http://www.freshplaza.it/article/85968/I-droni-per-lagricoltura- si-muoveranno-in-sciami-come-le-api-il-progetto-europeo-SAGA	Newswebsite	27/10/2016	SAGA experiment	Italy	x	experiment
http://www.computer- automation.de/feldebene/robotik/artikel/135294/	News website	31/10/2016	Experiments/RIFs	Germany	x	core consortium

http://www.rtve.es/noticias/20161102/comienza-ensayo- clinico-probara-durante-ano-primer-exoesqueleto-del-mundo- nino/1436353.shtml	News website	02/11/2016	Exotrainer	Spain		experiment
http://www.qds.it/23645-droni-come-supporto-agricoltura.htm	Newspaper	12/11/2016	SAGA experiment	Italy		experiment
http://www.protectaweb.it/ambiente/agricoltura/2553-la- buona-notizia-il-progetto-europeo-saga	News website	13/11/2016	SAGA experiment	Italy	x	experiment
http://cat.elpais.com/cat/2016/11/14/economia/1479115485_6 22618.html	Newspaper	14/11/2016	Smart City Expo/UPC	Spain		core consortium
http://www.bbc.com/News/business-38089984	News website	25/11/2016	SAGA experiment	UK		experiment
http://agronotizie.imagelinenetwork.com/agricoltura- economia-politica/2016/11/25/e-un-robot-il-viticoltore-del- futuro/52045	News website	25/11/2016	Grape experiment	Italy	x	experiment
http://mashable.com/2016/11/30/robot-help-earthquake- recovery/#wB7RIIym4Sqw	News website	30/11/2016	HyQ-REAL experiment	UK		experiment
http://www.dailystar.co.uk/News/latest-News/567063/robot- dog-HyQ-deployed-rescue-disaster-zones-Italy-technology-video	Newspaper	02/12/2016	HyQ-REAL experiment	UK		experiment
http://www.muhbirhaber.com/haber/deprem-sonrasi-enkazlar- da-4-ayakli-robotlar-arama-yapacak-44346.html	News website	05/12/2016	HyQ-REAL experiment	Turkey		experiment
http://www.elektroniktidningen.se/index.php/nyheter/62969- hittar-vaerde-och-hot-i-skrot	News website	05/12/2016	AAwsbe	Denmark		
http://ccaa.elpais.com/ccaa/2015/12/06/catalunya/144942474 8_228383.html	Newspaper	07/12/2016	ARSI	Spain		PDTI consortium
https://idw-online.de/de/News664727	News agency	07/12/2016	CATCH experiment	Germany	х	experiment
http://www.euroNews.com/2016/12/09/hyq-the-four-legged- robot-for-disaster-zones	TV	09/12/2016	HyQ-REAL experiment	France		experiment
http://www.parmadaily.it/292046/veicoli-autonomi-unipr- coordina-il-progetto-europeo-saferun/	News website	13/12/2016	SAFERUN experiment	Italy		experiment
https://article.wn.com/view/2016/12/13/Veicoli_autonomi_sicu ri_il_Dipartimento_di_Ingegneria_dellIn/	News website	13/12/2016	SAFERUN experiment	Italy		experiment
http://www.publicnow.com/view/7A7526106D3FCC9CCDA158A A5E3971B247AB53CA?2016-12-13-11:00:18+00:00-xxx4777	News website	13/12/2016	SAFERUN experiment	Italy		experiment
http://it.geosNews.com/p/it/emilia-romagna/pr/parma/veicoli- autonomi-unipr-coordina-progetto-europeo-saferun_13838862	News website	13/12/2016	SAFERUN experiment	Italy		experiment
http://www.unipr.it/notizie/veicoli-autonomi-sicuri-il- dipartimento-di-ingegneria-dellinformazione-coordina-il- progetto	News website	13/12/2016	SAFERUN experiment	Italy		experiment

https://www.freshplaza.com/article/2168194/germany-robots- to-harvest-cucumbers/	Magazine	14/12/2016	Catch	International		
http://www.pianetauniversitario.com/index.php/campus/41- notizie-dai-campus/6304-univ-di-parma-veicoli-autonomi-sicuri- il-dipartimento-di-ingegneria-dellinformazione-coordina-il- progetto-europeo-saferun	News website	15/12/2016	SAFERUN experiment	Italy		experiment
http://www.fruchtportal.de/News/artikel/025897/catch-setzt- zur-ernte-von-einlegegurken-auf-robotik	News website	15/12/2016	CATCH experiment	Germany	х	experiment
Gazetta di Parma	Newspaper	29/12/2016	SAFERUN experiment	Italy		experiment
http://www.20minutos.es/noticia/2922951/0/tecnova-inicia- 2017-con-proyecto-para-ampliar-6-9-hectareas-su-area- tecnologia-invernada/	Newspaper	29/12/2016	INJEROBOTS experiment	Spain		experiment
http://w+A216:D249ww.universitari.eu/2017/01/veicoli- autonomi-sicuri-luniversita-di-parma-coordina-il-progetto- europeo-saferun/	News website	11/01/2017	SAFERUN experiment	Italy	x	experiment
http://www.automazioneindustriale.com/luniversita-di-parma- coordina-il-nuovo-progetto-europeo-saferun/	News website	11/01/2017	SAFERUN experiment	Italy	х	experiment
http://www.ce.unipr.it/people/guarino/SAFERUN/saferun_gazz etta_parma.pdf	Newspaper	11/01/2017	SAFERUN experiment	Italy		experiment
https://www.greenplanner.it/2017/01/12/saferun-veicoli-senza- operatore/	News website	12/01/2017	SAFERUN experiment	Italy	x	experiment
http://www.logisticamanagement.it/contents/News/it/2017011 6/veicoli_autonomi_sicuri_in_magazzino_con_saferun	News website	16/01/2017	SAFERUN experiment	Italy	x	experiment
http://www.ce.unipr.it/people/guarino/SAFERUN/saferun_corriere_imprese.pdf	Newspaper	16/01/2017	SAFERUN experiment	Italy		experiment
http://automazione-plus.it/progetto-europeo-saferun-per- veicoli-autonomi-sicuri_88620/	News website	17/01/2017	SAFERUN experiment	Italy	x	experiment
http://www.rai.it/dl/RaiTV/programmi/media/ContentItem- 72cb7c49-2252-4e7f-a982-44b7a814e3b3.html	TV	18/01/2017	HyQ-REAL experiment	Italy		experiment
http://www.rai.it/dl/RaiTV/programmi/media/ContentItem- 72cb7c49-2252-4e7f-a982-44b7a814e3b3.html	TV	18/01/2017	HyQ-REAL experiment	Italy		
http://france3-regions.francetvinfo.fr/champagne- ardenne/emissions/jt-1920-champagne-ardenne	TV	20/01/2017	CLARC PDTI	France		PDTI consortium
http://www.canal32.fr/thematiques/societe/sujet/la-geriatrie- assistee-par-un-robot-du-20-janvier-2017.html	TV	20/01/2017	CLARC PDTI	France		PDTI consortium
https://journal.lavoix.com/liseuse/crop/cropped.php?filename= 148524	Newspaper	24/01/2017	CLARC PDTI	France		PDTI consortium

https://www.soiel.it/riviste/innovazionePA/2017/gennaio- febbraio/sommario/	Magazine	31/01/2017	SAFERUN experiment	Italy	x	experiment
http://en.calameo.com/read/00195792397dfb0ceb93f	Magazine	31/01/2017	SAFERUN experiment	Italy	х	experiment
https://aec-analisiecalcolo.it/notizie/295-/	Magazine	31/01/2017	SAFERUN experiment	Italy	х	experiment
http://www.Newsagielle.it/Detail_News_Display/Agroalimentari /politecnico-via-al-progetto-grape-per-ridurre-impatto- ambientale	News website	31/01/2017	Grape experiment	Italy		experiment
http://www.interempresas.net/Horticola/Articulos/168331- Tecnova-estara-presente-en-exhibicion-internacional-de- robotica-Global-Robot-Expo-2017.html	News website	31/01/2017	INJEROBOTS experiment	Spain	x	experiment
http://www.grape-project.eu/wp- content/uploads/2017/02/20170202-provinciacremona.pdf	Newspaper	02/02/2017	Grape experiment	Italy		experiment
http://www.grape-project.eu/wp- content/uploads/2017/02/20170203-Avvenire.pdf	Newspaper	03/02/2017	Grape experiment	Italy		experiment
http://www.letelegramme.fr/finistere/brest/forum/cap-sur-l- intelligence-artificielle-02-03-2017-11419017.php	Newspaper	03/02/2017	KERAAL experiment	France		experiment
https://techspark.co/venturefest-bristol-bath-showcases- regions-smart-city-tech/	News website	09/02/2017	RIF Bristol @ Venturefest Wales	UK	x	core consortium
https://www.redaccionmedica.com/secciones/ingenieria/el- primer-exoesqueleto-para-ninos-entre-los-mejores-proyectos- roboticos-6541	News website	13/02/2017	Exotrainer experiment	Spain	x	experiment
http://biotech-spain.com/en/articles/el-exoesqueleto-del-csic-y- marsi-bionics-entre-los-mejores-proyectos-de-rob-tica-con-fin- social-/	News website	13/02/2017	Exotrainer experiment	Spain	x	experiment
http://www.oneMagazine.es/exoesqueleto-para-ninos-con- artrofia-muscular	News website	13/02/2017	Exotrainer experiment	Spain	x	experiment
http://www.cuatro.com/noticias/sociedad/exoesqueleto- muscular-proyectos-UAE-AIRobotics_0_2323650282.html	News website	13/02/2017	Exotrainer experiment	Spain		experiment
http://www.catalunyavanguardista.com/catvan/robotica-con- fines-sociales/	Magazine	13/02/2017	Exotrainer experiment	Spain		experiment
http://www.jano.es/noticia-el-primer-exoesqueleto-dirigido- ninos-27325	News website	13/02/2017	Exotrainer experiment	Spain	x	experiment
http://www.pole-emc2.fr/zoom-sur-fastkit-solution-robotique- polyvalente-pour-la-logistique.html	News website	14/02/2017	Fastkit experiment	France	x	experiment
http://www.cronicanorte.es/exoesqueleto-del-csic-los-mejores- proyectos-robotica-fin-social/110416	Newspaper	15/02/2017	Exotrainer experiment	Spain		experiment

http://www.entraid.com/articles/mars-robots-agricole-fendt- sima-agriculture	Magazine	16/02/2017	MARS experiment	France	x	experiment
http://cordis.europa.eu/News/rcn/138935_en.html	Newswebsite	01/03/2017	RIF video	Belgium	x	core consortium
https://www.thedisruptory.com/2017/02/discover-echord- robotics-innovation-facilities-rifs-brand-new-rif-video-launched/	News website	01/03/2017	RIF video	France	х	core consortium
https://ec.europa.eu/digital-single-market/en/News/lab- market-robotics-innovation-facilities	News website	01/03/2017	RIF video	Belgium	x	core consortium
http://www.equip-prod.com/wp- content/uploads/Magazines/voir85/megazine/src/PDF/8.pdf	Magazine	01/03/2017	Fastkit experiment	France	х	experiment
http://www.ciospain.es/movilidad/en-2018-los-drones- inspeccionaran-las-alcantarillas-de-barcelona	News website	02/03/2017	ARSI	Spain	x	PDTI consortium
https://roboticsandautomationNews.com/2016/03/02/echord- to-develop-robots-for-sewer-inspection/3074/	News website	02/03/2017	RIF video	UK	x	core consortium
http://www.letelegramme.fr/finistere/brest/kines-bientot-un- robot-a-la-rescousse-03-03-2017-11420299.php	Newspaper	03/03/2017	KERAAL experiment	France		experiment
https://actu.fr/societe/un-robot-pour-assister-les- kinesitherapeutes_5215082.html	Newspaper	03/03/2017	KERAAL experiment	France		experiment
http://robohub.org/sneak-peek-inside-two-robotics-innovation- facilities-rifs-in-europe/	News website	03/03/2017	RIF video	Switzerland	х	core consortium
http://spectrum.ieee.org/automaton/robotics/industrial- robots/video-friday-robots-with-airbags-drone-vs-drone-mit- jumping-cube	News website	03/03/2017	RIF video	USA	x	core consortium
http://infodron.es/id/2017/03/03/noticia-barcelona- inspeccionara-alcantarillas-drones.html	News website	03/03/2017	ARSI	Spain	х	PDTI consortium
http://www.ouest-france.fr/bretagne/poppy-le-robot-qui- soigne-les-dos-4842822	Newspaper	06/03/2017	KERAAL experiment	France		experiment
https://www.thedisruptory.com/category/publications- en/press-release_en/	News website	06/03/2017	RIF video	France	x	core consortium
https://www.heise.de/Newsticker/meldung/Roboter-fuer-die- Landwirtschaft-Von-der-Saat-bis-zur-Frucht- 3663425.html?wt_mc=nl.ho.2017-03-25	News website	25/03/2017	Agrifood workshop at ERF	Germany	x	core consortium
https://www.futurezone.de/b2b/article210072629/Vom-Labor- auf-den-Markt-ECHORD.html?ref=sec	News website	28/03/2017	ECHORD/ECHORD**	Germany	x	core consortium
http://www.oleodinamicapneumatica.it/2017/03/30/veicoli- guida-autonoma-monitorare-la-vigna-le-attivita-agricole/	News website	30/03/2017	Grape experiment	Italy	x	experiment

https://www.elektroniknet.de/markt-technik/karriere/china-		05/04/2017		Gamma		
koennte-die-meisten-jobs-verlieren-140455.html	Magazine	05/04/2017	RIF Peccioli	Germany	х	
https://play.tv2.dk/programmer/nyheder/serier/nyhederne/	TV	06/04/2017	AAwsbe	Denmark		
VDE dialog	Magazine	15/04/2017	ECHORD ⁺⁺	Germany	x	core consortium
http://agriculturers.com/un-nuevo-concepto-enjambres-de- robots-agricolas/	News website	21/04/2017	MARS experiment	Spain	x	experiment
Gazetta di Parma	Newspaper	24/04/2017	SAFERUN experiment	Italy		experiment
http://robohub.org/eu-funded-robotics-technology- experiments-present-their-work-at-hannover-messe/	News website	25/04/2017	Hannover Messe	Switzerland	x	core consortium
https://gts-net.dk/nyheder/nyhed/intelligente-robotter-skal- sortere-miljoefarligt-affald/	Magazine	26/04/2017	AAwsbe	Denmark		
http://www.trasmissionidipotenza.it/veicoli-guida-autonoma- monitorare-le-attivita-agricole/	News website	02/05/2017	Grape experiment	Italy	x	experiment
http://www.canalsur.es/television/programas/andalucia- directo/detalle/33.html?video=1166045&sec=	τv	08/05/2017	INJEROBOTS experiment	Spain		experiment
https://ing.dk/artikel/robotter-med-kunstig-intelligens-skal- fjerne-batterier-elektronikaffald-198146	Magazine	08/05/2017	AAWSBE1 experiment	Denmark	x	experiment
https://ing.dk/artikel/robotter-med-kunstig-intelligens-skal- fjerne-batterier-elektronikaffald-198146	Magazine	08/05/2017	AAwsbe	Denmark		
http://mo.infomedia.dk/ShowArticle.aspx?Duid=e60ed073&Urll D=f683f872-16f6-4f98-9547-883970be586a&Profile=19494	News website	08/05/2017	AAwsbe	Denmark		
https://www.tu.no/artikler/roboter-med-kunstig-intelligens- skal-fjerne-batterier-fra-elektronikk-avfall/382707	Magazine	10/05/2017	AAWSBE1 experiment	Norway	x	experiment
http://www.idag.dk/article/view/469051/kunstig_intelligens_sa ettes_ind_mod_miljofarligt_affald&OpointData=72644967b133 aec27606789012e9e313JmlkX3NpdGU9NzYzMCZpZF9hcnRpY2xl PTcxMDQ4JmlkX3VzZXI9Mjg0MCZpZF9hcHBsaWNhdGlvbj0xMD AwMzU5Jmxhbmc9ZW4=	Magazine	10/05/2017	AAwsbe	Denmark		
http://one.elpais.com/primer-exoesqueleto-ninos-ha-creado- una-ingeniera-espanola/	Newspaper	17/05/2017	Exotrainer experiment	Spain		experiment
http://mo.infomedia.dk/ShowArticle.aspx?Duid=e6428738&UrlI D=f683f872-16f6-4f98-9547-883970be586a&Profile=19494	News website	18/05/2017	AAwsbe	Denmark		
http://www.seiercapital.com/robotarm-kunstig-intelligens-skal- sortere-affald/	Magazine	29/05/2017	AAwsbe	Denmark		
http://mo.infomedia.dk/ShowArticle.aspx?Duid=e6462c41&Urll D=f683f872-16f6-4f98-9547-883970be586a&Profile=19494	News website	30/05/2017	AAwsbe	Denmark		

https://www.youtube.com/watch?v=a5_kQScrZew	TV	02/06/2017	MARS experiment	Germany		experiment
http://keraal.enstb.org/press/ka_poppy[1771].pdf	Magazine	15/06/2017	KERAAL experiment	France	х	experiment
http://mo.infomedia.dk/ShowArticle.aspx?Duid=e64e24a9&UrlI D=f683f872-16f6-4f98-9547-883970be586a&Profile=19494	News website	20/06/2017	AAwsbe	Denmark		
http://www.ktc.dk/nyhed/robotter-kan-fjerne-batterier-i-affald	News website	20/06/2017	AAwsbe	Denmark		
http://www.pnn.de/potsdam/1193774/	Newspaper	22/06/2017	CATCH experiment	Germany		experiment
http://pixelbook.tecnichenuove.com/Newsstand/macchineagric ole/viewer/guest/com.tecnichenuove.macchineagricole.ma.201 7.004/	Magazine	01/07/2017	SAGA experiment	Italy	x	experiment
https://www.shephardmedia.com/News/uv-online/rta-receive- unmanned-logistics- vehicles/?utm_content=buffer685f8&utm_medium=social&utm _source=linkedin.com&utm_campaign=buffer	News website	06/07/2017	MAX-ES experiment	UK	x	experiment
http://www.coleconomistes.cat/ASP/RESUMSPREMSA/El_Perio dico_de_Catalunya18072017_2.pdf?utm_source=ATTEST&utm_ campaign=c9345a29fc- EMAIL_CAMPAIGN_2017_07_18&utm_medium=email&utm_ter m=0_a2a29dd69d-c9345a29fc-270952381	Newspaper	18/07/2017	ARSI	Spain		PDTI consortium
https://horizon-Magazine.eu/article/eu-s-future-cyber-farms- utilise-drones-robots-and-sensors_en.html	News website	24/08/2017	SAGA experiment	Belgium	х	experiment
http://robohub.org/eus-future-cyber-farms-to-utilise-drones- robots-and-sensors/	News website	25/08/2017	SAGA experiment	Switzerland	х	experiment
http://cordis.europa.eu/result/rcn/202833_en.html	News website	06/09/2017	GAROTICS and MARS	Belgium	х	core consortium
http://www.toscana24.ilsole24ore.com/art/oggi/2017-09- 13/robot-patto-pisa-ricerca-070814.php?uuid=gSLApHLsQC	Newspaper	13/09/2017	ECHORD** press tour	Italy	х	core consortium
https://www.heise.de/Newsticker/meldung/Echord- Europaeische-Robotik-auf-Werbetour- 3832036.html?hg=1&hgi=0&hgf=false	News website	14/09/2017	ECHORD ⁺⁺ press tour	Germany	х	core consortium
https://www.proplanta.de/Agrar- Nachrichten/Landtechnik/Fendt-schickt-neuen-Roboter-Xaver- aufs-Feld_article1505899249.html	News website	20/09/2017	MARS experiment	Germany	х	experiment
http://www.tecnovino.com/eurecat-desarrolla-robot- monitorizacion-mantenimiento-vinedo/	News website	16/10/2017	Grape experiment	Spain	x	experiment
http://www.waterworld.com/articles/wwi/2017/10/video- game-of-drones-for-barcelona-sewer-inspection.html	News website	25/10/2017	ARSI PDTI	USA	х	PDTI consortium
https://ing.dk/artikel/nu-skal-robotten-neural-traeningslejr- 208145	Magazine	06/11/2017	AAWSBE1 experiment	Denmark	х	experiment

		1			1	1
http://www.letelegramme.fr/morbihan/lorient/maintien- domicile-la-technologie-en-appui-07-11-2017-11731417.php	News website	07/11/2017	KERAAL experiment	France		experiment
https://www.tum.de/fileadmin/w00bfo/www/TUMcampus/201 7_4/2017_4_TUMcampus.pdf	Magazine	07/11/2017	ECHORD++	Germany	x	core consortium
http://agriculturers.com/agricultura-de-precision-la-semilla-de- una-nueva-revolucion-agricola/	News website	08/11/2017	GAROTICS and MARS	Spain	x	core consortium
http://www.canalsur.es/multimedia.html?id=1221251	TV	09/11/2017	CLARC PDTI	Spain		PDTI consortium
https://blog.aira.life/airalab-rally-show-2017-munich-tum- 4d65b297d2bc	website	12/11/2017	ECHORD ⁺⁺	Russia	x	core consortium
http://www.infoplc.net/plus-plus/tecnologia/noticias- tecnolog%C3%ADa/item/104876-nueva-solucion-robotizada- para-la-inspeccion-de-alcantarillado?platform=hootsuite	News website	13/11/2017	ARSI PDTI	Spain		PDTI consortium
https://www.fruchtportal.de/artikel/catch-ing-robotik-fur-die- gurkenernte/031194	News website	22/11/2017	CATCH experiment	Germany	x	experiment
http://packagingspace.net/it/News/robot-di-servizio-le-ultime- novita-a-automatica-2018	News website	22/11/2017	SAGA and MARS	Italy	x	core consortium
https://www.roboticstomorrow.com/News/2017/11/22/robotic s-is-breaking-through-into-multiple-service-industries/11039/	News website	22/11/2017	SAGA and MARS	UK	x	core consortium
https://www.fruchtportal.de/artikel/catch-ing-robotik-fur-die- gurkenernte/031194	News website	22/11/2017	Catch	Germany	x	
https://www.ke-next.de/specials/robotik/smarte-roboter- erobern-medizin-landwirtschaft-und-logistik-302.html	News website	27/11/2017	SAGA and MARS	Germany	x	core consortium
http://www.infosalus.com/asistencia/noticia-hospital-sant-joan- deu-barcelona-prueba-primer-exoesqueleto-infantil-mundo- 20171129170103.html?_ga=2.180186272.542619600.15181799 57-261435316.1518179957	News website	29/11/2017	Exotrainer	Spain	x	experiment
http://www.rtve.es/noticias/20171129/hospital-sant-joan-deu- barcelona-prueba-primer-exoesqueleto-infantil-del- mundo/1639920.shtml	TV	29/11/2017	Exotrainer	Spain		experiment
http://www.elperiodico.com/es/sanidad/20171129/un- exoesqueleto-ayudara-a-andar-a-ninos-del-hospital-sant-joan- de-deu-con-atrofia-muscular-6457904	Newspaper	29/11/2017	Exotrainer	Spain		experiment
http://www.catalunyapress.es/texto- diario/mostrar/961126/exoesqueleto-ayudara-ninos-atrofia- muscular-caminar	News website	29/11/2017	Exotrainer	Spain		experiment

http://www.infodefensa.com/es/2017/11/30/noticia-escribano- hospital-primer-exoesqueleto-pediatrico-mundo.html	News website	30/11/2017	Exotrainer	Spain	x	experiment
http://prnoticias.com/prensa/prisa/20166303-escribano- mechanical-and-engineering-cede-al-hospital-sant-joan-de-deu- barcelona-el-primer-exoesqueleto-pediatrico-portable-del- mundo	News website	30/11/2017	Exotrainer	Spain	x	experiment
https://tuotrodiario.hola.com/noticias/2017113071452/esperan za-exoesqueleto-espanol-caminar-ame/	News website	30/11/2017	Exotrainer	Spain	x	experiment
http://www.efesalud.com/exoesqueleto-pediatrico-portable/	News website	30/11/2017	Exotrainer	Spain	х	experiment
http://www.diariodeferrol.com/articulo/espazo- educativo/exoesqueleto-ninos-atrofias- musculares/20171130002726209887.html	Newspaper	30/11/2017	Exotrainer	Spain	x	experiment
https://www.consalud.es/saludigital/90/el-primer- exoesqueleto-pediatrico-portable-del-mundo-se-usara-en- espana_44689_102.html	News website	02/12/2017	Exotrainer	Spain	x	experiment
https://www.cuentamealgobueno.com/2017/12/hospital-sant- joan-deu-tendra-primer-exoesqueleto-pediatrico-portable-del- mundo/	News website	02/12/2017	Exotrainer	Spain	x	experiment
http://www.vilapress.cat/texto-diario/mostrar/964850/hospital- san-juan-dios-prueba-primer-exoesqueleto-pediatrico-mundo	News website	05/12/2017	Exotrainer	Spain		experiment
https://voltaico.lavozdegalicia.es/2017/12/espana-primer- exoesqueleto-portable/	News website	11/12/2017	Exotrainer	Spain	x	experiment
http://www.automa.cz/cz/casopis-clanky/robot-pro- automatizovanou-sklizen-okurek-2017_01_0_9496/	Magazine	17/12/2017	Catch	Tschechien	x	
https://www.enisa.es/es/comunidad-enisa/casos-de- exito/marsi-bionics-un-ejemplo-de-transferencia-tecnologica	News website	20/12/2017	EXOTRAINER	Spain		
http://w+A216:D249ww.universitari.eu/2017/01/veicoli- autonomi-sicuri-luniversita-di-parma-coordina-il-progetto- europeo-saferun/	News website	11/01/2017	SAFERUN experiment	Italy		experiment
http://www.bitmat.it/blog/News/70547/robot-servizio- conquistano-sempre-piu-settori [1]	News website	05/01/2018	SAGA and MARS	Italy	x	core consortium
http://www.automazioneNews.it/robot-servizio-conquistano- sempre-piu-settori/	News website	16/01/2018	SAGA and MARS	Italy	x	core consortium
http://teleducato.it/News.php?id_News=33029	News website	30/01/2018	SAFERUN experiment	Italy	х	experiment
https://medizin-und-technik.industrie.de/medicine-and- technology-engineering-for-the-medical-device-industry/	Magazine	Feb-18	Exotrainer, CLARC	Germany	x	core consortium

https://phys.org/News/2018-02-lightweight-robots-harvest-						
cucumbers.html	Magazine	01/02/2018	Catch	International		
https://eandt.theiet.org/content/articles/2018/02/robots-set- to-replace-humans-on-cucumber-flyers-on-german-farms/	Magazine	02/02/2018	Catch	International		
http://www.seedquest.com/solutions.php?type=solution&id_ar ticle=95375&id_region=&id_category=&id_crop	News website	02/02/2018	Catch	International		
https://www.futuretimeline.net/blog/2018/02/5-2.htm	blog	05/02/2018	Catch	International		
https://www.roboticsresear.ch/articles/13693/lightweight- robots-harvest-cucumbers		05/02/2018	Catch	Schweiz		
https://www.greenhousecanada.com/News/picking-cucumbers- by-robot-hand-32316	Magazine	05/02/2018	Catch	Canada	х	
https://www.newfoodMagazine.com/News/64408/end- cucumber-flyers-robot/	Magazine	05/02/2018	Catch	UK	х	
https://www.gabot.de/ansicht/fraunhofer-mit-leichtbau- robotern-auf-gurkenernte-389780.html	News website	07/02/2018	Catch	Germany		
https://www.elektrotechnik.vogel.de/ein-leichtbau-roboter- fuer-die-gurkenernte-a-683776/	Magazine	07/02/2018	Catch	Germany		
http://www.almeriahoy.com/2018/02/primer-robot-para- realizar-injertos.html	News website	09/02/2018	INJEROBOTS experiment	Spain		experiment
http://www.digitaljournal.com/tech-and- science/technology/automating-agriculture-with-light-weight- robots/article/514470	Magazine	09/02/2018	Catch	International		
https://www.goedemorgensierteelt.nl/bloemen- planten/nieuws/vet-robot-oogst-komkommers/	News website	09/02/2018	Catch	Netherlands		
https://www.hortoinfo.es/index.php/6699-robot-injerto-090218	News website	09/02/2018	INJEROBOTS experiment	Spain	х	
http://www.innovagri.es/actualidad/el-primer-robot-para- injertos-horticolas.html	News website	12/02/2018	INJEROBOTS experiment	Spain	х	experiment
https://www.groentennieuws.nl/article/169284/robot-als- redding-voor-duitse-augurkenoogst//	News website	12/02/2018	Catch	Netherlands		
https://biooekonomie.de/nachrichten/neuer-ernteroboter-fuer- gurken	News website	14/02/2018	Catch	Germany	x	
https://www.ingenieur.de/technik/fachbereiche/landtechnik/ku enftig-sollen-roboter-die-gurken-ernten/	News website	14/02/2018	Catch	Germany		
https://www.springwise.com/eu-project-develops-robotic- cucumber-harvester/	News website	15/02/2018	CATCH experiment	UK	x	experiment

https://www.springwise.com/eu-project-develops-robotic- cucumber-harvester/	Magazine	15/02/2018	Catch	International		
https://geekerhertz.com/article/a-helping-robot-hand-to- harvest-vegetables	News website	16/02/2018	Catch	International		
https://www.canadianpackaging.com/automation/lightweight- robots-harvest-cucumbers-159205/	Magazine	16/02/2018	Catch	Canada	x	
https://www.robotics.News/2018-02-17-robots-automating- harvesting-cucumbers-germany.html	Magazine	17/02/2018	Catch	International	x	
https://www.naturalNews.com/2018-02-17-robots-automating- harvesting-cucumbers-germany.html	News website	17/02/2018	Catch	International		
https://newatlas.com/cucumber-harvesting-robot/53425/	News website	18/02/2018	Catch	International		experiment
http://agrodiariohuelva.es/2018/02/18/presentado-el-primer- robot-para-realizar-injertos-de-horticolas/	News website	18/02/2018	INJEROBOTS experiment	Spain	х	
https://www.digitaltrends.com/cool-tech/cucumber-picking- robot/	News website	19/02/2018	Catch	International		experiment
https://www.ideaconnection.com/new-inventions/robotic- cucumber-harvester-12798.html	News website	19/02/2018	Catch	International		
https://www.infohightech.com/un-robot-a-double-bras-pour- donner-un-coup-de-main-ou-deux-lors-de-la-recolte-du- concombre/	News website	19/02/2018	Catch	International		
https://internetofbusiness.com/robotic-cucumber-harvest- fraunhofer/	News website	21/02/2018	САТСН	International		
https://www.vision-systems.com/articles/2018/02/researchers- develop-lightweight-dual-arm-vision-guided-robot-system-for- cucumber-harvesting.html	Magazine	21/02/2018	Catch	International	x	
https://emoneypak.com/harvesting-robot-to-save-a-big-slice-of- cucumber-market/	News website	21/02/2018	Catch	International		
http://www.industryeurope.net/Article/11900/Harvesting- robot-to-aid-Europes-struggling-farming-market/	News website	26/02/2018	CATCH experiment	UK	х	experiment
https://www.springerprofessional.de/productionproduction- technology/machinery/lightweight-robots-harvest- cucumbers/15499638	News website	01/03/2018	Catch	Germany		
http://www.seedquest.com/solutions.php?type=solution&id_ar ticle=95375&id_region=&id_category=&id_crop	Newspaper	28/03/2018	Catch	International		
https://blogrecherche.wp.imt.fr/en/2018/04/04/robot- algorithms-physical-rehabilitation/	News website	04/04/2018	KERAAL experiment	France	x	experiment

https://www.robotik-produktion.de/allgemein/robots-in-depth- sebastian-weisenburger/	Newsletter	11/04/2018	ECHORD**	Germany	x	core consortium
https://www.distrelec.de/current/de/automatisierung/lernen- sie-roboter-kennen-die-die-work-life-balance-verbessern/	News website	16/04/2018	Catch	Germany	x	
http://www.elektronikfokus.dk/robotsystem-sorterer- miljoefarligt-affald-med-kunstig- intelligens/&OpointData=4048f9e37d03946aa060e90b403c4ae1 JmlkX3NpdGU9MTAzODkyJmlkX2FydGljbGU9NTM3NCZpZF91c2 VyPTI4NDAmaWRfYXBwbGljYXRpb249MTAwMDM1OSZsYW5nP WVu	Magazine	25/04/2018	AAwsbe	Denmark	x	
https://www.altomteknik.dk/nyheder/2018/04/25/teknologisk- institut-nyt-robotsystem-sorterer-miljoefarligt-og- ressourcefyldt-affald-med-kunstig- intelligens/&OpointData=0b444c31f9a49d2d359d95d8c65745b 9JmlkX3NpdGU9MTAzODE1JmlkX2FydGljbGU9ODUxNSZpZF91c 2VyPTI4NDAmaWRfYXBwbGljYXRpb249MTAwMDM1OSZsYW5n PWVu	Magazine	25/04/2018	AAwsbe	Denmark		
https://itreload.dk/artikel/it/nyt-robotsystem-sorterer- miljfarligt-og-ressourcefyldt-affald-med-kunstig- intelligens&OpointData=4fec91b4dce32ce109e1ae0d85ac16e7J mlkX3NpdGU9OTQ3NzMmaWRfYXJ0aWNsZT0yNTI1JmlkX3VzZXI 9Mjg0MCZpZF9hcHBsaWNhdGlvbj0xMDAwMzU5Jmxhbmc9ZW 4=	Magazine	26/04/2018	AAwsbe	Denmark	x	
https://www.jernindustri.dk/article/view/599076/intelligent_ro bot_frasorterer_dyrebart_skrot	Magazine	26/04/2018	AAwsbe	Denmark		
https://www.metal- supply.dk/article/view/599056/intelligent_robot_frasorterer_dy rebart_skrot&OpointData=30072e2256e469547b2d6213977cd3 0aJmlkX3NpdGU9MTI1NjUmaWRfYXJ0aWNsZT02MDM3OSZpZF 91c2VyPTI4NDAmaWRfYXBwbGljYXRpb249MTAwMDM1OSZsY W5nPWVu	Magazine	26/04/2018	AAwsbe	Denmark	x	
https://www.electronic- supply.dk/article/view/599055/intelligent_robot_frasorterer_dy rebart_skrot&OpointData=1c90dbadb8fff2a6edaecc2f81e6426a JmlkX3NpdGU9MTI1NjQmaWRfYXJ0aWNsZT0zMzM5MCZpZF91 c2VyPTI4NDAmaWRfYXBwbGljYXRpb249MTAwMDM1OSZsYW5 nPWVu	Magazine	26/04/2018	AAwsbe	Denmark	x	

https://elek-data.dk/artikel/produktion/dansksvensk- robotsystem-sorterer- elektronikaffald&OpointData=a12cf5ed3c63f4340d4091a3c774 d542JmlkX3NpdGU9MTc3OTgmaWRfYXJ0aWNsZT0xMDUxMCZp ZF91c2VyPTI4NDAmaWRfYXBwbGljYXRpb249MTAwMDM1OSZs YW5nPWVu	Magazine	30/04/2018	AAwsbe	Denmark		
https://www.tu.no/artikler/roboter-med-kunstig-intelligens- skal-fjerne-batterier-fra-elektronikk-avfall/382707	News website	10/05/2018	AAwsbe	Norway		
https://www.jernindustri.dk/article/view/469385/robotter_med _kunstig_intelligens_skal_sortere_miljofarligt_affald	Magazine	18/05/2018	AAwsbe	Denmark	x	
El Periódico de Catalunya 22/05/2018	Newspaper	22/05/2018	ARSI	Spain		
EL periodico de Catalunya	Newspaper	22/05/2018	ARSI	Spain		
https://ipaper.ipapercms.dk/TechMedia/TekniskNyt/2018/7/?p age=4#/	Magazine	12/06/2018	AAWSBE1 experiment	Denmark	x	experiment
https://www.innovations- report.de/html/berichte/messenachrichten/robotik-live-auf- der-automatica-fraunhofer-ipk-fuehrt- automatisierungsloesungen-vor.html	News website	12/06/2018	CATCH experiment	Germany	x	experiment
https://www.produktion.de/technik/das-sind-die-neuen- roboter-auf-der-automatica-2018-107.html	News website	19/06/2018	ISYBOT	Germany	x	core consortium
https://www.youtube.com/watch?v=K35eYEqEx1Q&feature=yo utu.be	YouTube	21/06/2018	ECHORD++	International		
https://www.zdnet.com/pictures/11-fabulous-futuristic-robots- from-automatica-2018/	News website	22/06/2018	Automatica	USA	x	core consortium
https://medium.com/@ReachRobotics/top-robotic-innovations- at-automatica-2018-7329497690a8	News website	26/06/2018	AAwsbe	International		
https://japan.cnet.com/article/35121699/	Magazine	03/07/2018	AAWSBE1, ANYMAL, CATCH, FLEXSIGHT, CLARC, LINARM, SAGA, SIAR	Japan	x	
El Periódico de Catalunya 18/07/2017	Newspaper	18/07/2018	ARSI	Spain		
https://www.zdnet.com/pictures/11-fabulous-futuristic-robots- from-automatica-2018/	Magazine	22/07/2018	AAWSBE1, ANYMAL, CATCH, FLEXSIGHT, CLARC, LINARM, SAGA, SIAR	International	x	
https://healthcare-in-europe.com/de/News/roboter- exoskelette-co-ein-ausblick-auf-die-pflege-der-zukunft.html	Magazine	22/08/2018	Exotrainer, CLARC, Assesstronic, Linarm	Germany	x	core consortium
https://www.fluid.de/anwendungen/spezialanwendungen/ernt eroboter-die-zukunft-der-landwirtschaft-326.html	Magazine	23/08/2018	SAGA, CATCH	Germany	x	core consortium

https://www.interempresas.net/Horticola/Articulos/223341-CT- Tecnova-recibe-primer-accesit-a-innovacion-tecnologica-en- Premios-Innovagro-2018.html	Newspaper	13/09/2018	INJEROBOTS experiment	Spain		
Interempresas.net	News website	27/09/2018	ARSI	Spain	х	
http://www.rtve.es/alacarta/videos/espana-directo/espana- directo-05-10-18/4777498/#	TV	05/10/2018	EXOtrainer, SIAR, CLARC	Spain		core consortium
https://www.diariosur.es/universidad/cinco-entidades- representativas-20181005153622-nt.html	Magazine	05/10/2018	EXOTRAINER	Spain	x	
https://www.sueddeutsche.de/muenchen/freising/vortrag-in- weihenstephan-roboter-auf-dem-acker-1.4238029	Newspaper	03/12/2018	MARS experiment	Germany		experiment
https://www.roboticsbusinessreview.com/unmanned/european -swarm-robotics/	News website	07/12/2018	MARS, ECHORD	International	х	
https://dronedj.com/2019/01/09/gdu-launches-saga/	News website	09/01/2019	SAGA	International	x	
http://www.sevillaactualidad.com/sevilla/116773-proyecto- clarc-un-robot-para-evaluar-pacientes-en-el-virgen-del-rocio/	Newspaper	25/01/2019	CLARC	Spain		experiment
https://www.europapress.es/esandalucia/sevilla/noticia-virgen- rocio-lidera-oferta-europea-crear-robot-ayude-evaluacion- motora-pacientes-20190125170144.html	Newspaper	25/01/2019	CLARC	Spain		
https://pixelbook.tecnichenuove.com/Newsstand/macchineagri cole/viewer/guest/com.tecnichenuove.macchineagricole.ma.20 19.001/	Magazine	11/02/2019	CATCH, Garotics, MARS	Italy		experiment

Section A4: Press releases and events

Date	Торіс	Initiated by
03/03/2014	Press release concerning the first call for experiments	TUM
10/03/2014	New Scientific magazine visit. News feature & Photo- shoot for future edition. Tour of RIF and talk about E ⁺⁺ programme.	BRL
12/03/2014	BBC News at Six. National news article on British Robotics filmed within RIF area of the BRL. RIF@Bristol programmed the Baxter robot to provide a live demo.	BRL
21/08/2014	Press release: Automatica video on future of robotics	TUM

Section A5: Advertisements

Medium	Туре	Date	Торіс	Country
Gazeta Wyborcza	newspaper	03/03/2014	1st call for experiments	Poland
Expansión	ón newspaper		1st call for experiments	Spain
Les Echos	newspaper	04/03/2014	1st call for experiments	France
The Engineer	magazine	10/03/2014	1st call for experiments	UK
Messe Kurier	trade fair newspaper	03/06/2014	E ⁺⁺ @ Automatica	Germany

SECTION B (confidential or public)

Section B1: List of application for patents, trademarks, registered designs, etc.

	Patents and trademarks										
No. of patent or trademark	Patent or Trademark ?	Type of IP Rights	Confidential (YES/NO)	If it is confidential please give us the reason ?	Foreseen embargo date (dd/mm/yyyy)	Application reference (e.g. EP123456)	Subject or title of application	Applicants	CE Certification (for hardware only) (YES/NO)		
MODUL	Patent	n.a.	No	n.a.	n.a.	EP16181251	Joint unit, joint system, robot for manipulation and/or transportation, robotic exoskeleton system and method for manipulation and/or transportation	Hutter, Marco	No		
WIRES	Patent	n.a.	Yes	Commercial Exploitation	n.a.	n.a.	n.a.	n.a.	n.a.		

Section B2: List of exploitable foreground

				Ехр	loitable Foregrou	nd			
Experiments	Type of Exploitable Foreground (Choose from the list)	Description of Exploitable Foreground	Confidential (YES/NO)	Foreseen embargo date (dd/mm/yyyy)	Exploitable product(s) or measure(s)	Sector of Application	Timetable comercial or any other use	Patents or other IPR exploitation (licences)	Owner & Other Beneficiary(s) involved
CoHRoS	General advancement of knowledge	Teaching methods for high-DOF robots have been advanced	no	Unknown	None	n.a.	n.a.	n.a.	n.a.
GARotics	General advancement of knowledge	Harvesting tool for green asparagus	yes	Unknown	None	Green asparagus harvesting	not predictable	n.a.	STRAUSS + CWS
GAROUCS	General advancement of knowledge	Asparagus detection	yes	Unknown	None	Green asparagus harvesting	not predictable	n.a.	STRAUSS + CWS
	General advancement of knowledge	Measurement system for physilogical meaurements	no	Unknown	None	Rehabilotation, human- computer interaction	NONE	NONE	UL
LINarm**	General advancement of knowledge	New variable stiffness actuators	no	Unknown	LINarm2 and LINarm3	Industry and Medical	N/A	N/A	CNR
	General advancement of knowledge	Multimodal control for rehabilitation platforms	no	Unknown	None	Medical	N/A	N/A	CNR
MObile robo T for upper limb neurOrtho Rehabilitation	Commercial exploitation of R&D results	Improvement in the design and firmware of the device. Proof of efficacy of the device	no	Unknown	MOTORE**	Healthcare	Product is already on the market since june 2016	PTC in the background	Humaware SRL
	Commercial exploitation of R&D results	Software License	yes	Unknown	None	Robotics	n.a.	yes	ETH

pickit	General advancement of knowledge	Developement of sensor	no	Unknown	new picking architecture and design of sensor	Robotics	n.a.	n.a.	n.a.
SAPARO	General advancement of knowledge	Innovative technology for Safety in Human Robot cooperation	no	Unknown	Tactile floor with visualization system	Industrial automation	n.a.	n.a.	n.a.
	General advancement of knowledge	Collaborative strategy for safe assistance	no	Unknown	None	Collaborative Robotics	n.a.	n.a.	n.a.
TIREBOT	Commercial exploitation of R&D results	Collaborative mobile robot for mounting wheels	no	Unknown	None	Automotive	n.a.	n.a.	n.a.
	General advancement of knowledge	In depth knowledge of what to expect from a deep learning solutions and how to tweak it	no	Unknown	Quality control and identification	Production	n.a.	n.a.	Refind / DTI
AAWSBE1	Commercial exploitation of R&D results	Imporved Deep learning training and test platform	no	Already	Backend for all their products	Not specific	n.a.	n.a.	Refind
AAWSBE1	Commercial exploitation of R&D results	DTI Pickware easy binding between DTI Vision Box 2 and robot for pcik and place	no	2019	Combined quality control and pick and place	Production	n.a.	n.a.	DTI
	Commercial exploitation of R&D results	DTI Vision Box 2	no	Already	Quality control with data logging	Production	n.a.	n.a.	DTI

	Commercial exploitation of R&D results	WEEE sorting	no	2020	Presorting in feed to trad. Recycling. Battery chemistry sorting.	Recycling	n.a.	n.a.	Refind / DTI
САТСН	General advancement of knowledge	The CATCH experiment has attracted a huge interest from scientific and large community, focusing on specific critical developments and improvements of robotic harvesting identified in the practical project work, and utilize the added value an of the achieved project results.	no	Unknown	Dual-arm robotic system, grippers, vision system, detection and localization algorithms, control algorithms	Precision agriculture, industry	n.a.	n.a.	n.a.
DUALARMWORKER	Exploitation of R&D results via standards	Integration of Work-Cell with Dual-Arm Motion Planning	yes	Unknown	Software and Hardware	Robotics, manufacturing industry	n.a.	n.a.	TECNALIA
	General advancement of knowledge	Library for Dual- Arm Motion Planning	no	Unknown	Software	Robotics, manufacturing industry	n.a.	n.a.	CNRS
GRAPE	General advancement of knowledge	Lesson learned on using localization and navigation algorithms in	no	None	Results of the validation experiments and comparison	Agriculture robotics	Under publication	None	EURECAT

		vineyard environments							
	General advancement of knowledge	Methodologies and know-how on plant detection and vineyard monitoring, including robot positioning, robotic arm localization, scanning process, 3D reconstruction, real-time video streaming, multispectral imaging and plant growth monitoring	no	None	Methodology and experimental results	Agriculture robotics	Under publication	None	EURECAT
HOMEREHAB	Commercial exploitation of R&D results	HomeRehab system license	yes	7/1/2019	Full HOMEREHAB system	Clinical Rehabilitation	n.a.	Utility model	CEIT/UMH
	General advancement of knowledge	HyQreal quadruped robot	yes	Unknown	a quadruped robot and a locomotion framework	research, nuclear, rescue, maintenance, surveillance, agriculture, construction.	not clear yet	working on software license	IIT
HyQ-REAL	Commercial exploitation of R&D results	ISA for many types of robot arm/leg applications	no	Unknown	An integrated servo actuator, suitable for HyQ-REAL type applications and other applications that require high fidelity position and	robot arm/leg applications in many sectors	Low rate production and sales from Sep 2018.	n.a.	Moog

					force control in a compact, low mass, package				
	General advancement of knowledge	Exploit the experience of the HyQ-REAL project to develop a compact, high performance, direct drive servo valve in a cartridge configuration. This valve will have performance characteristics suitable for high fidelity control of force and torque based systems.	yes	Unknown	A compact "Sub- miniature" cartridge style Direcr Drive servovalve with high badwidth >200Hz+, and low internal friction. Versions with and without on-board loop closure electronics.	robotics, motorsport, aerospace, etc.	planned market introduction December 2019.	n.a.	Moog
	General advancement of knowledge	Exploit the experience of the HyQ-REAL project to development of a family of "Smart Manifolds".	yes	Unknown	These "Smart Manifolds" have similar characteristics to the MOOG ISA, but can be used to control, and communicate with, a third party actuation device. They are suitable for HyQ-REAL type applications and other applications	robotics, motorsport, aerospace, etc.	planned market introduction December 2019.	n.a.	Moog

					that require high fidelity position and force control in a compact, low mass, package				
	General advancement of knowledge	Algorithm for assessing human motions	no	Unknown	None	n.a.	n.a.	n.a.	n.a.
Keraal	General advancement of knowledge	Algorithm to choose advice for movement improvement	no	Unknown	None	n.a.	n.a.	n.a.	n.a.
	General advancement of knowledge	Ecnonmical model for a robot coach	yes	1/1/2020	None	health tech	n.a.	n.a.	n.a.
SAFERUN	Commercial exploitation of R&D results	A velocity planner able to push up the efficiency of LGVs while preserving safe working conditions	no	Unknown	LGVs implementing the new planner can drive feaster and safe, improving the overall performance of automated warehouses	Industrial automation	Starting from Q2 2019 the feature will be sold in all new projects	n.a.	Elettric80 SpA (as owner) and its customers (as other benificiaries)
	General advancement of knowledge	New trajectory planning concepts to be used for the generation of safe and fast motions	no	Unknown	Scientific papers	Industrial automation	n.a.	n.a.	University of Parma
SAGA	General advancement of knowledge	Object recognition software using embedded camera systems	no	None	Can be exploited by any (mobile) robotic application	n.a.	n.a.	n.a.	n.a.

						with vision software				
		Commercial exploitation of R&D results	Indoor navigation using ultra-wideband technology	no	None	State estimation filters for UAVs	n.a.	n.a.	n.a.	n.a.
		Commercial exploitation of R&D results	Monitoring of crops by UAV using RTK GPS system	no	None	UAV with RTK GPS and Camera system	n.a.	n.a.	n.a.	n.a.
		General advancement of knowledge	Swarming UAVs	No	None	Distributed monitoring or measurement by UAVs	n.a.	n.a.	n.a.	n.a.
		General advancement of knowledge	Image acquisition and onboard processing by UAV using embedded electronics	No	None	Camera system integrated with NVIDIA Jetson TX1	n.a.	n.a.	n.a.	n.a.
		General advancement of knowledge	Simulation of UAV behavior using UWB navigation in a swarm	No	None	UAV simulation environment	n.a.	n.a.	n.a.	n.a.
		General advancement of knowledge	Design of gimball stabilizer for camera system on UAV	No	None	2-axis stabilizer system for mobile robotics camera	n.a.	n.a.	n.a.	n.a.
	WIRES	Commercial exploitation of R&D results	Component detection algorithm	NO	Unknown	Software	Robotic assembly	1 year	licenses	UNIBO
		Commercial exploitation of R&D results	Cable manipulation system	NO	Unknown	Robotic Gripper	Robotic assembly	2 years	n.a.	UNIBO

		General advancement of knowledge	Tactile sensor	NO	Unknown	Tactile sensor	Robotic assembly	n.a.	n.a.	SUN
		Commercial exploitation of R&D results	Software for the extraction of the switchgear data	yes	Unknown	Software	Manufacturing	1 year	licenses	UNIBO
		Commercial exploitation of R&D results	Cable tracking system for cluttered environments	yes	Unknown	Software	Robotic assembly	1 year	licenses	UNIBO
		Commercial exploitation of R&D results	Task planner for cabling activities	yes	Unknown	Software	Robotic assembly	1 year	licenses	UNIBO

3 Report on societal implications

Please note, that this section of the final report will be delivered by the end of the project, as ECHORD++ is extended by two months until the end of March 2019

The evaluation, based on the data from the questionnaire will assist the Commission to obtain statistics and indicators on societal and socio-economic issues addressed by projects. As well as producing specific statistics, the replies will also help identify those projects that have shown a real engagement with broader societal issues, and thereby identify interesting approaches to these issues and best practices.