

The European Coordination Hub for Open Robotics Development

HyQ-REAL experiment (partners: IIT and Moog)

Claudio Semini, Istituto Italiano di Tecnologia (IIT), Italy

Barcelona – 27/March/2019

Background

Motivation for the Work Conducted

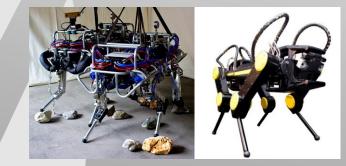
- Need of Moog to improve and validate micro-hydraulics and push them into market. Many interested end-users.
- Hydraulic quadrupeds not on the market yet, but have huge potential for various applications.

Technical Problem Addressed / Challenge Overcome

- Technical challenges to build and integrate fully onboard hydraulic system with battery. Hurdles are size, weight and efficiency.
- Solution demands for multi-domain expertise ranging from valve design, add. manufacturing, robot design, joint control, locomotion, software, etc. Only Boston Dynamics did it, but no intentions to sell hydraulic robots.

Expertise Relied on

 IIT is expert in robot design and control, Moog in hydraulics and additive manufacturing (AM)


Start-date / End-date: 9/2016 – 6/2018

Participation in Experiment Booster? - No

27/03/19 - Claudio Semini

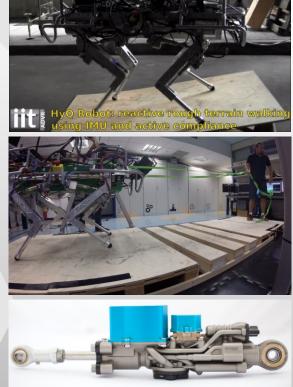
Solution Developed

Starting Point

- We had a hydraulic quadruped robot prototype (HyQ) with a hydraulic tether, sophisticated control software for rough terrain locomotion, limited robustness.
 Formula1 servovalves, Integrated Servo Actuator (ISA) prototypes, expertise in miniature hydraulics and AM.
- Both IIT and Moog used internal money to get to the starting point.

Approach Followed / Development Work Conducted

- Improvement of Moog's Integrated Servo Actuator
- More reliable robot design and software, safety layers
- Development of hydraulic components including onboard pumps to make robot power-autonomous


Technical Result / End Point

- HyQreal prototype
- Moog ISA in the market (TRL 8)

Range of new miniature hydraulic components

27/03/19 – Claudio Semini

Being an Experiment in ECHORD++

Benefit from participation in ECHORD++

- Externally monitored timeline/milestones
- Feedback on progress
- Financial support
- Visibility, PR (fairs, conferences etc.)
- Strong additional financial support by both partners with their own money

Impact on Development Process

Moog started many new projects with universities, but thanks to the E++ funding of HyQ-REAL, they favoured this project over others that did not receive any external funding.

Actionable Insights

- Areas of possible improvement for future FSTP (cascade funding) in upcoming Ec projects:
 - Improved monitoring platform

Faster amendment process or different type of involvement of the partners

27/03/19 – Claudio Semini

Impact of Work Conducted

What do you have to show for it?

• HyQreal robot, ISA and other new hydraulic components

What has the support allowed you to achieve

- Increase in technology maturity
- Created jobs (Moog 4, IIT 15 for 3 years), made sales (30 ISAs), improved a product (ISA), etc.

How does the outcome fit with your development strategy

• The ISA is a TRL8 product and is starting to show first sales to selected end-users. The HyQreal robot will be used in follow up projects and sold in a future start up company (not created yet).

Unpublished - confidential

Future use of expertise

Follow-up projects:

- INAIL Teleop (3 years, 3 MEuro)
- Vodafone 5G (2 use cases)
- Moog@iit joint lab extension (3+2 years)

