

The European Coordination Hub for Open Robotics Development

4^{rth} Review Meeting – WP3

EXOTrainer

Clinical Evaluation of Gait Training with Exoskeleton in Children with Spinal Muscular Atrophy

Call 1, Exp. 401

401

CSIC *m* marsi-bionics

-bionics Sant Joan de Dév 🗿

Dr. Elena Garcia, Spanish National Research Council (CSIC)

Luxembourg – 2018-02-21

Background

Motivation for the Work Conducted

• Health & Social need: "SMA children's life expectancy is limited by the lack of walking ability. It is a current need to have a device that allows these children walk effortlessly and so to delay, even avoid related complications" Dr. Febrer, MD, Head of Rehabilitation Children's Hospital Sant Joan de Déu

Technical Problem Addressed / Challenge Overcome

- Nature of the problem, provide a wearable gait exoskeleton for a new group of patients with complexity in symptoms, evolution, restrictions
- Technical challenge, self adapt to each patient's symptoms and to degenerating character

Expertise Relied on

- A first paediatric gait exoskeleton for tetraplegia
- Patented Variable-stiffness actuators
- The best clinical expertise

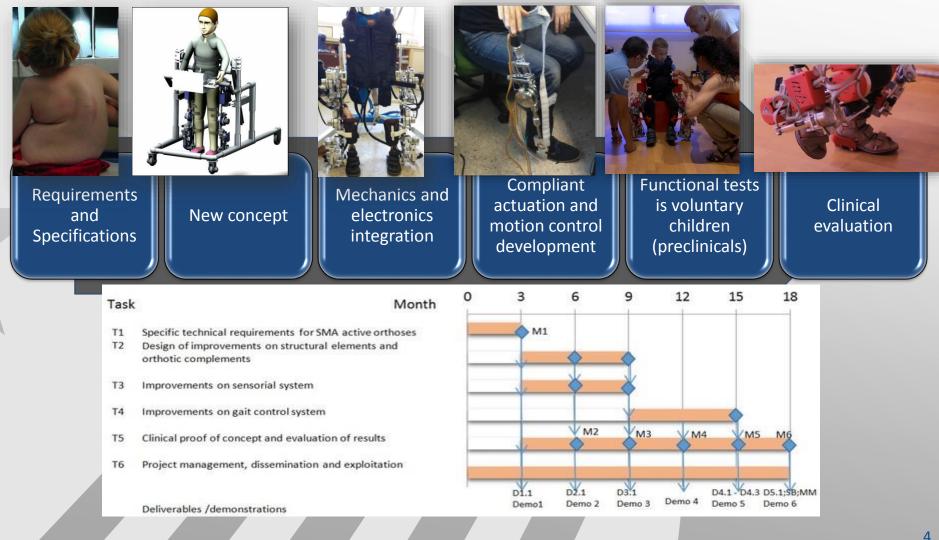
1 May 2015 / 31 January 2017 Participation in Experiment Booster? YES

EXOTrainer builds over available technology and addresses a new target group and different diseases

Starting Point

- All commercially available gait exoskeletons were indicated for adult paraplegics.
- The only pediatric gait exoskeleton available (ATLAS) was a research prototype by CSIC, indicated for pediatric tetraplegia, but not for NMD.

ATLAS project, 2010-2013 funded by Spanish Ministry for Innovation and Science


Approach Followed / Development Work Conducted

- EXOTrainer was redesigned for the physiological requirements of SMA children:
 - Additional degrees of freedom (5 per leg) for 3D mobility and thoracic control
 - Minimum user height of 95 cm (the average height of a 3-year old child)
 - Make use of compliant joints, to actively control joint impedance to self adapt to user symptoms

Approach Followed / Development Work Conducted

Technical Result / End Point

- The project started with a prototype only indicated for SCI.
- The new exoskeleton can be used by more groups of patients, such as those affected by Spinal Muscular Atrophy.

Technical Result / End Point

TRI	L 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL7	TRL 8	TRL 9
Bas	sic	Concept	Experimental	Laboratory	Clinical	Device safety	Final	CE / FDA	Series
ide	a	developed	development	proof of	proof of	demonstrated	product	Marking	production
				concept	concept		validated		
	Basic	research	Preclinical	research	Late	Clinical t	rials		
					preclinical				
					research				
	Res	earch	Technology D	velopment			Со	mmercializa	ition

- EXOTrainer departed from TRL 4 and finalized TRL6.
- At present the device has been industrialized and requesting for CE marking. TRL7 to TRL8

Being an Experiment in ECHORD++

Benefit from participation in ECHORD++

Impact on Development Process

- Short-term, very focused, market-driven research which allows realistic testing of prototypes, fast results.
- This research was previously submitted to EU calls without success. This project would not have been realized without the funding from Echord++.

Impact of Work Conducted

ATLAS 2030 PEDIATRIC WEARABLE GAIT EXOSKELETON

BENEFITS	USER REQUIREMENTS		
Pediatric exoskeleton for the therapy of neuromuscular diseases since 3 years old	Max weight 40 kg		
Intensive use offers benefits by improving ROM, delaying the on- set of scoliosis, ostheoporosis, contractures and other side effects	Flexos at hip, knee and ankle below 15º		
Gait pattern and driving force are intelligently adapted to each patient's needs	Scoliosis below 20º		
Hands free, provides full mobility in all spatial directions	Contraindication: Osteoporosis and excesive fragility or skin sensitiveness		
Positive impact on life quality of children and families.			

Safety frame for postural balance able to go through doorways 65 cm wide

> Ergonomic corset, cuff and shoes tailor made for NMD children

Simple size-adjustment mechanism

Compliant actuators that emulate the function of natural muscle

Option 8-12 active degrees of freedom		
Weight	14 kg	
Power	Electric DC	
Max speed	0,5 m/s	
Battery lifetime	2,5 hours continuous	

ſ					
				-	I
	S		12 ⁴ ,		-
	S.	MAR		(

User height	From 1m to 1,5m
Adjustable in size	Size M
Thigh	24 cm - 33 cm
Shank	23 cm - 32 cm
Width	24 cm - 35 cm

Being an Experiment in ECHORD++

Benefit from participation in ECHORD++

Actionable Insights

 Areas of possible improvement for future FSTP in upcoming EC projects: <u>Approach more diseases and target</u> groups

This would have been very difficult to achieve with children that do not preserve their cognitive capabilities. However, after the expertise gained through this project we are now ready to face affections showing non-cognitive capabilities such as Cerebral Palsy.

> Spinal Muscular Atrophy Muscular Dystrophy Cerebral Palsy Myopathies Spina Bifida

60 M. People can't walk 95% affected by degenerative neurological disorders Palsy injury Stroke, Hemiplejia Parkinson Neuromuscular diseases Spinal cord Elderly Children Adults STROKE / Hemiplejia PostPolyo Muscular Dystrophy **Multiple Sclerosis** After surgery rehabilitation

Impact of Work Conducted

What has the support allowed you to achieve

• Increase in technology maturity, test in clinical domain, bring us closer to commercialization

How does the outcome fit with your development strategy

- Exoskeleton already installed at Sant Joan de Deu Childrens Hospital
- Clinical research on impact for ADL

Outlook

