DexBuddy — System Overview

1) Summary

DexBuddy is mainly a software capability demonstrator experiment. It shows the potential of
the combination of 3D-vision, finger-based force sensing and wrist-based force sensing used
with online grasp and motion planning as well as force-controlled motions. Furthermore, it
shows how concepts of intuitive programming can be used to parameterize arm and finger
motions for dexterous manipulation. The overall setup is demonstrated in the context of a
dexterous industrial assembly use-case with cables.

This documents provides a more detailed textual system description than the software
integration or storyboard deliverable.

2) Deviations from project plan

The project was delayed because of the necessity to integrate force sensors into the
fingertips of the robotic hand. This was not originally intended and could only be achieved
from M12-M15. This delayed the final experiments and the final, full experiments could just
be performed near the end of the project. However, full integration of 3D-vision-based grasp
planning, finger-based force control and wrist-based force control could be achieved beyond
the planned state. Adding fingertip-based force control to the system also increased the
complexity of the software system. Thus, final experiments could not be performed as
extensively as originally planned.

3) System overview

<TODO>

‘ % 3D camera
Wrist force sensoris g
‘ ,/ \ Robot hand
Robot arm Cable grasp point]
fingertip force sensors - 3 computation

(1 per finger)

ARTIMINDgab'e ’

3D camera point cloud
Arm movement) o and cable localization

/’ /
/.
;‘
programming software™

T IS

Iget_cable_points

I/get_cable_points

Iget_grip_points

Nisualizatior]

Nisualizatiof

lcalculate_pose

;‘visualizaliodr

marker

marker

marker

A

—,—_—_—————

/get_grip_points

e N I

]

Icable_detection_3d/cable_detection/cables

Iset_transforr

Ish_JOINT _position_controller/command _
Ish_JOINT _position_controller/pid/set_parameters

A callsservice o B
A publshes message on opi

Ipath_mover/graph_info

Y

Ipath_mover/graph_request

4) Individual components

4.1) Cable pose and shape localization

Input are 3d point clouds given by an Ensenso N20 camera system. The Ensenso N20
contains a stereo camera setup with two 1.3 mega pixel cameras and a projector projecting
a random but static pattern to bring more texture information to the scene. Not only the
short aperture angle causes a small field of view, also the shallow depth of field of camera
and projector cause a small depth range where 3d information is recognized with low noise.
According to this restriction the cable, which should be recognized, has to be in this area.
Detecting the cable consists of various steps of preprocessing the point cloud, detecting
cable candidates and validating those. The first step is clustering the point cloud and
dismissing all clusters, which are too big for a cable or too small for a stable decision
whether this cluster belongs to a cable or not. Then each remaining cluster is checked for a
cable shape using RANSAC with a cylindrical model. All clusters fulfilling these criteria are
used as seed points for the next step.

In the next step the process iteratively searches for cable segments starting at these seed
points. For easier iteration steps, all points from the point clouds are shifted along their
calculated normal in this way, so that all points from the cable surface are now at the cable
center of mass. Thus, the diameter of the cable has to be known apriori. Now, the iteration
proceeds as follows: first, the direction of the cable segment at the current point is
determined by the last two points. At the initial step the direction of the cylinder is used.
Now we are going along this direction to get an initial guess for the next point and enhance
the position of this point by calculating the center of mass of all points located in a sphere
around the initial guess. The resulting points now form a discrete representation of the
center of mass of the cable segment. Together with the diameter of the cable segment they
form a chain of spheres, which represents the cable segment.

These cable center points have to be filtered to delete some possible false positives by using
some constraints like the following: there have to be enough surface points in the initial
point cloud around the found cable center points and the curvature of the segments has to
be less than a maximum value.

By starting at some seed points and never checking whether two points belong to the same
cable, the found cable can be represented by two or more independent segments of cable
center points. These segments have to be merged together. This is done by checking the
distance between every point of one cable with all others. If the distance is lower than a
threshold, both points are deleted and a new point, calculated by the average of these
points, is added to the final cable.

This approach works quite well detecting cables and determining the correct position, even
when the cable does not have ideal characteristics like in DexBuddy project, where the
profile of the used cable was not perfectly round and the surface consisted of fleece and was
a bit ruffled. Even the full camera resolution was not needed and it was possible to reduce it
to speed up the recognition a lot and so it was possible to process one point cloud in about
0.3 seconds.

4.2) Finger motion optimization

The task of this component is the optimization of grasps that haven been taught via the
teaching component (see 4.6). It assumes that the human-taught finger motions are “good”,
but that they may not be optimal. That is, by some slight variation of the joint angles a
better grasp with the same characteristic as the base grasp might be achievable. Thereby,
“better” refers to some kind of quality metric. In this case, the epsilon metric (i.e. the radius
of the biggest sphere in the grasp wrench (or force) space induced by the grasp's contacts) is
used. The optimization is done in simulation, using the robot simulator Gazebo.

The component currently uses the following ROS packages: cable_generation,
contacts_utility, grasp_evaluation, grasp_optimization and grasp_optimization_msgs. It uses
grasp execution functionality provided by the movement component (ROS package
path_mover).

Package cable_generation: Used to generate random cable configurations so the grasp can
be tested on several different cables. The cable is modeled as a chain of cylinders and double
revolute joints between each cylinder. Parameters such as the standard deviation and the
smoothing coefficients of the joint angles can be changed dynamically. The package provides
a ROS service, which can be called in order to spawn a random cable at a given pose in the
simulation. Currently the spawned cable is static, i.e. not moving (left picture).

Package contacts_utility: Some utilities such as collecting and visualizing the contact
information from the simulation (middle picture, contacts are yellow, force vectors are red).

i iy,
v

Package grasp_evaluation: Computes the quality of a grasp given its contact information.
The package provides ROS services which take a grasp's contact information (i.e. the
wrenches exerted by the grasp), construct the convex hull over either the force vectors
(grasp force space, 3D) or the wrench vectors (grasp wrench space, 6D) using the library
ghull, and compute and return the epsilon (g, see above) and ny (v, volume of the grasp
space) metrics of the grasp. Friction cones are used to model soft-finger-contacts (right
picture, convex hull of four friction cones. The radius of the sphere in the center is the
epsilon metric).
Package grasp_optimization: The core package, performs and controls the optimization
process. The optimization process consists of the following steps:
Load the human-taught grasp.
Vary the cable pose and evaluate, choose the best cable pose.
Vary the grasp joint angles and evaluate, choose the best joint angles.
Vary the cable pose and evaluate (with best joint angles),
choose the best cable pose.

5. Save the optimized grasp.
It uses ROS topics and services provided by the other packages.

El

4.3) Arm motion control
M

4.4) Finger motion scheduling and execution

The scheduler component plays a central role in the DexBuddy project since it is responsible
for the coordination of and the interaction between the different components of DexBuddy.
As a central component it interacts with all other components during the real-time
execution of a grasping task, that is the camera, the ShadowHand and the UR5.

vision H cable_handler] <—>‘ path_mover
! !
step_controller

Elle)

|
|
|
|
|
|
|
|
|
|
|
|
I

Software

UoNNoaXe SWI-eay

Hardware

Camera URS ShadowHand

Interaction with the camera

For the DexBuddy project an Ensenso 3D stereo camera is used to record and gather
information about the location of the cable to grasp. On the software side, the cable
recognition is realized by the vision component of DexBuddy. Additionally, the cable _handler
component is used to gather data recorded from the camera by the vision component and to
generate an interpolated cable (see picture) from this data. Based on the generated cable,
the grasp points and the respective pose of the ShadowHand can be calculated by the
cable_handler and are offered to the scheduler via ROS service calls.

Interaction with the ShadowHand

The execution of a ShadowHand grasp is performed by the path_mover component of
DexBuddy. For this purpose, the scheduler can retrieve information about the available
grasps, so-called “graphs”, and trigger the execution of a specific graph via ROS service call
to the path_mover.

Task list
Status Executer Command Description Execute next
fmshed vson ensble enalewson | reateselected
dnshed ws move dedervedginder beaeal
Y foshed shdester eseceguphdexer | Remove slected
')) Clear list

Load... save...

1sec : || Addsleeptime

output
Sent to URS: (0.006733, -0.001869, 0.178617, 0.309048, -0.124463, -0.575775)
Received from URS: 1
Graph executed [finish]
Transform published

Graph selection

dexter & Load graph list

Grip point selection

red_cylinder

Threshold: (0.1 Save grip point Reset saved grip point Print saved grip point

shadowRobot | UniversalRobot | Vision | Utils

ShadowHandLite

Add selected graph as command

Interaction with the UR5

The communication to the UR5 is realized by establishing a TCP connection between the
scheduler and the URS5. For this, the scheduler acts as a TCP server to which the UR5 can
connect in order to exchange data. This data can be information about the location of the
grasp point or other a priori agreed command codes to perform specific movements on the
URS.

Task execution
The overall grasping task can be divided into sub-tasks, each concerning different
components. Therefor, the scheduler offers the functionality to create and add sub-tasks and

to automatically execute them in sequence. Depending on the executing task, the scheduler
will interact with the respective component, e.g. to call the path_mover service to perform a
specific grasp with the ShadowHand. Each task will either return a success or a failure code
indicating whether a task was successful or if an error occurred during its execution. In case
of a failure, the automatic execution will stop immediately to prevent further damage to the
hardware components. Alternatively, the execution can also be performed step by step by
manually selecting the next task to execute.

Task List

Status Executer Command Execute Next

fshed 2 xecte selected
e 4] Ercate Al

Remove Selected

Clear List

1sec +| | AddSleep Time

ShadowHand URS

0: 2FFingernagelgriff = Add Command 0:success S Add Command “‘ “

Load Graph List Connect to URS

Pose Calculation)

Publish Transform for Selected Graph Calculate URS Pose for Selected Graph

Output

get_grip_points called

calculate_pose called

POSITION: [0,013304; -0,065593; 0,196173]
ROTATION: [9,170395; 39,109825; -211,154861]
path_mover/graph_request called

[FINISHED] service response: [finish]

4.4) Finger motion control

The following chapter describes the act of grasping the cable in action by the robot shadow
hand-lite. After the camera locates the cable and the point by which the shadow-hand
should grasp, the robot arm combined with the shadow hand-lite moves to a calculated
point.

On the picture, you can see the robot arm, which has reached the right position to grasp the
cable at the calculated point. For grasping the cable, the shadow robot hand needs to
change the position of the finger joints. A new grasp has to be taught before beginning the
whole process of threading the cable into the hook. For teaching a grip, the finger-teach
program, described in Section 4.6, is used, with which it is possible to save the position of
every finger. For that you need to bring each finger of the robot-hand to the desired
position. For changing the position of the finger joints you have to run the joints with
position controllers. In the need of grabbing something with the humanoid robot hand you
have to switch the controllers to effort controllers. If the joints are running in effort control
the finger is able to push with a defined force against objects. That is the reason why the
controllers of the fingers run in position control until the finger-sensors feel something or
the finger joints have reached their position. If the finger-sensors feel pressure on their tips
some defined joints of the hand-lite change to effort control and the other joints stay in
position control. After gripping a cable and changing the different controllers from position
control to effort control we experimentally found out which controllers need to switch their
status and how strong the effort for the effort controllers should be. This does not have to
be the best solution for the change between position and effort control. For this reason we
do more research work for finding better solutions for gripping. This research deals with
searching for the optimal position of the joints and finding out which controllers have to
change and how strong they should be for the best grip. After a successful performance of
the robot arm the controllers from the robot hand can switch from effort control to position
control for opening the hand without overtaxing. Afterwards the robot-hand can start a new
task.

4.5) Arm motion teaching
Arm motion teaching is performed by using the ArtiMinds RPS in it standard online teach-in
mode.

4.6) Finger motion teaching

Teach graph

The Teach graph tab is used to teach a graph. The result will be a .graph file which can be
used for imitating. See figure screens/tab-teach-graph.png.

Main

. Graph name: The name of the graph and also the corresponding .graph file. The
graph name must be alphanumeric, but it may contain “-” and “_” in between letters and
numbers. If a graph already exists, it can be overwritten (a warning message will appear in

this case).
. Cable: The information of the cable.
° Use cable: A checkbox to specify whether a cable should be used for this graph or

not. The following bullets are only available when this checkbox is checked (they are grayed
out if it is unchecked).

° Position (x|y|z): The position of the cable with x, y and z coordinates.
° Orientation (w|x]|y|z): A quaternion w, X, y, z specifying the orientation of the cable.
° Distance | Width: Distance to the cable and width of the cable.

. Nodes: A list of nodes which are relevant for this graph.

° A node can be added by selecting a node from the dropdown and pushing the Add
selected button.

° A node can be removed by selecting a node from the list and pushing the Remove
selected button.

° Please be aware that the order of the nodes in the list is arbitrary. The successor of a
node is determined by the Next node property described in Teach node.

. Start node: Select a node from this dropdown to specifiy the node to start from.
Please be aware that this dropdown is populated by the nodes specified in the Nodes list.
This means that the Start node must be one of the added nodes.

Tools

. Save graph: Saves the graph. If the graph with the name specified in Graph name
does already exist, a modal will appear asking the user whether the existing file should be
overwritten or not.

. Reset: Resets all input fields (empties them).

Example

A user wants to teach a graph for the hand to form a fist. For this he has previously created
the node file fist.node. This step by step guide will show how to accomplish this task.

Enter the name of the graph: Input fist in Graph name.

He does not need a cable to form a fist, so he leaves the checkbox for Cable unchecked.
From the dropdown below the Nodes list, he selects the node fist and pushes the Add
selected button.

Since fist is the only node for this graph, there is only one possibility for the Start node. He
therefore chooses fist as the Start node from the dropdown.

The user now pushes the Save node button to save his work.

Imitate

The Imitate tab is used to review and test nodes and graphes. See figure screens/tab-

imitate.png.

Main

e Imitatables: A list of imitatables (i.e. nodes and graphes). An imitatable can be selected
from the list.

Tools

e Imitate selection: Imitates the imitatable selected in the Imitatables list.
* Restore default pose: Restores the default hand state (a flat hand).

Example

The user has previously created a graph to from a fist (fist.graph). He now wants to test if it
works as expected. This step by step guide will show how to accomplish this task.

1. The user selects fist.graph from the list of Imitatables.

The user pushes the Imitate selection button and reviews the result. (Alternatively, he could
have double-clicked fist.graph from the list of Imitatables.

x DexBuddy - Teach and imitate grasps

Teach node | Teach graph | Imitate

Teach graph

Graph name *:

Cable:

Tools

[] Use cable
Position (x|y|z):
Orientation (w|x|y|z):

Distance|width:

Nodes *:

2FFingernagelgriff

Enter name for this graph...

0.00000

0.00000

0

0.00000

0.00000

Add selected

Save graph

Reset

0.00000

0.00000 0.00000

0

Remove selected

Start node *:

Imitate

Fields marked with * are mandatory

DexBuddy - Teach and imitate grasps

Teach node Teach graph | Imitate

Tools

Imitatables:

2FFingernagelgriff.graph

i Imitate selection

2FFingernagelgriff.node
2Fmidd|ePinzette1.graph
2FmiddlePinzette1.node
2finger.graph
2finger.node

affe.graph

affe.node

blub.node

dexter.graph
dexter.node
dexter_lite.graph
dexter_lite.node
dexter_simulation.graph
dexter_simulation.node
firstfinger.node
fist.graph

fist.node

fun.graph

fun.node

metal.node
middlefinger.node
open_dexter.graph

nnan_davtarnnda

Restore default pose

