Overview
The DexBuddy software architecture, corresponding software components and specific
algorithmic procedures have been developed as planned in the proposal.

: 1
ROS Node, : ROS Node, Custom | ArtiMinds RPS,
Finger training DexBuddy scheduler: TCP/IP )| Arm training
ROS Node 2 Coordination and Hand :
c A Interface \ :
able localization; DexBuddy :
delivers a sequence of Scheduler: : /

spheres, modeling a live- : Arm/FTS Interface |
localized cable Ao ] 4
UR Script,
generated by ArtiMinds Robot
Programming Suite (RPS),
Arm Controller

ROS Node,
Grasp focal point
computation; delivers a
grasp focus point

Arm/FTS force-
adaptive arm
segments

z

ROS Node, oL
Grasp computation from | : =
trained model on focus | :
point; delivers TCP goal,
finger strategy

ROS Node,
Grasp position and force
mode coordination and
control

Four main groups of modules can be distinguished:

1) The scheduler system, coordinating the abstract task sequence and respective
component interaction

2) The cable localization system, using a 30 Hz, industrial point-cloud 3D-camera

3) The grasp computation and execution control system

4) The arm motion and force-control execution system

Components 3) and 4) additionally have a training stage, to easily (re)teach task
segments.

Components 2) and 3) are fully based on ROS, while component 4) is fully realized by
the commercial ArtiMinds Robot Programming Suite (RPS) and its respective, generated
UR Script programs. Component 1) is a hybrid, with the communication between the
two platforms realized by a lean TCP/IP interface.

Component 1)

The scheduler is a lean sequence management program, developed to switch between
exclusive arm motion and exclusive hand motion segments as stated in the DexBuddy
proposal. Its main part is implemented as a ROS node with a sequence visualization and
a control GUI for human interaction. On the RPS-side, a special RPS template has been
developed exclusively for the DexBuddy project, which automatically generates the UR
Script code for the TCP/IP communication interface. The UR Script then actually acts as
a server, receiving segment execution commands at arbitrary times.

Practical experience: The coordination of the different components works automatically
and well.




Component 2)

The cable localization, developed exclusively for the DexBuddy project, utilizes the Point
Cloud Library (PCL) to process the point cloud delivered at up to 30 Hz by the ENSENSO
3D-camera. A complex pipeline of processing filters leads at the end to a chain of
spheres, modeling the shape and location of arbitrary cables in arbitrary shape
configurations within a certain cable diameter range.

Practical experience: The system is able to localize the cable of the HVAC with a difficult,
“woolen” surface and only 8mm diameter surprisingly robustly with a robot-TCP-
mounted ENSENSO. It takes around 3 seconds to process at the moment. There is
potential for further speed-up.

Component 3)

The hand/finger motion computation and force control module group is the largest
portion, developed exclusively for the DexBuddy project. It consists of three layers of
hand static/dynamic grasp/manipulation computation and control:

3a): Grasp focal point computation:

The localization system delivers the cable shape and pose as a regular sequence of
spheres. The grasp focal point computation module performs several steps based on
that input: computing an interpolation/smoothing of that chain of spheres; then
computing the area of interest for grasping, depending on the trained grasp (which
mostly means relative to the end of the cable); and finally computing a cylinder from
neighboring spheres, the center of which is then the grasp focal point.

[Further work, involving deep learning to deliver advanced fingertip pose computation
also considering strong, local cable bending is currently still under work, but was not
promised in the proposal.]

3b): Grasp adaptation from trained grasp and execution monitoring:

A trained grasp type, matching the selection of the scheduler is loaded from the database
and adapted to the computed focal point. The resulting, necessary robot-TCP-pose is
computed for the motion planning goal of component 4).

[Further work utilizing the deep learning, mentioned above, as well as Movelt! for finger
motion planning towards the computed fingertip poses is also under way, but was not
promised in the proposal].

3c): Low level position / force control management:

The low-level control module manages the position-control motion along the computed
finger motion as well as the correct timing for the switch into force control of the fingers
and the execution and monitoring of the final force-controlled motion part.

Practical experience:

Grasp computation, based on real, live cable localization data works well as does the
switch from position to force control. However, the cable shape around the grasp focal
point may not be bent too much. To account even for such extreme cases, a high-end
system combining deep-learning neural networks with classical geometric motion
planning for the fingers, is currently developed.

Component 4)

The arm motion computation and force control component is mostly comprised of the
commercial ArtiMinds RPS. Additional to the part of component 1), the specific arm
motion and force control segments are trained using the ArtiMinds RPS and its
generated UR Script code.



Practical experience: The system currently lacks one specific motion template type for a
certain type of constraint free move. This is the last functionality lacking in the overall
DexBuddy software system and will be implemented by ArtiMinds at the beginning of
2016, to be usable for the main experiments.



