

Laser Assisted RObotic Surgery of the anterior Eye Segment

D 7.5 - Final release of integrated robotic platform

Authors: Bernardo Magnani; Ekymed Srl Fabio Leoni; Fastenica Srl Francesca Rossi; IFAC-CNR Filippo Micheletti ; IFAC-CNR

Outline of the content

- Final status of the LA-ROSES system:
 - End-Effector subsystem: mechanical solution and laser motor handling implementation
 - Laser subsystem: laser motors control system and synchronization electronic circuit
 - Robotic arm solution
 - Vision system: HW components
 - LA-ROSES master controller system

End-effector status

- no force feedback implemented: with the new laser, there is no need to touch the cornea surface
- the use of a laser distance system eliminates also the sterilisation issues
- it is anyway necessary to know the distance (cameracornea), but this can be done directly with a calibration of the camera and the kinematics of the system
- the end-effector was designed for a large set of configurations:
 - Laser working distance from 10 cm to 40 cm
 - Laser angle from 20° to 70°
- the <u>measured</u> resolution of the motors is below 0,1 μm

LA-ROSES overall system diagram

End-effector Last release CAD

End-effector cameras positioning

Final version of the End Effector

Final version of the End-Effector

Legenda of the main components

- 1. NIR camera
- 2. ω axis motor
- 3. Thermal camera
- 4. x axis motor
- 5. Laser
- 6. α axis motor

The new robot: Mitsubishi RV-13FM

Main features

- 6-axis
- Repeatability: ±0,05 mm
- Payload: 13 kg
- Linear Workspace: 1094 mm
- Weight: 120 kg
- real-time path control capability

1DS camera UI-3240CP-NIR-GL Rev.2

hutter

	Sensor	
	Sensor type	CMOS Mono
	Shutter	Global Shutter / Rolling shutter / Global Start S
	Sensor characteristic	Linear
	Readout mode	Progressive scan
	Pixel Class	SXGA
	Resolution	1.31 Mpix
	Resolution (h x v)	1280 x 1024 Pixel
	Aspect ratio	5:4
	ADC	10 bit
	Color depth (camera)	12 bit
	Sensor Size	1/1.8"
	Optical Size	6.784 mm x 5.427 mm
	Optical sensor diagonal	8.69 mm (1/1.84")
	Pixel size	5.3 µm
	•• • •	-

At WD of about 200mm we have an optical/camera resolution of 40 um/pix

Thermal Camera

- Dimensions: 46 x 56 x 90 mm
- thermal sensitivity: 40 mK
- thermal image recording in real time at up to 80 Hz
- weight: 320 g incl. lens
- detector with 382 x 288 pixels
- usable at ambient temperatures of up to 70 °C without the need for additional cooling

Motor driver control Unit

To simplify the motor control all selected motors are driven by the same type of control unit: the Faulhaber the MCST 3601 .

Faulhaber IDE for setting motor's motion

parameters for laser movement

TMCL-IDE 3.0						-	0	×
File Tools Options Views Help							1 -= 0	10
Connected devices			0010111				2 - 10	14.0
Device	Settings @MCS1	3601 [Aa] <1st motor of 3>	: COM3-Id 1					
V+ USB	Motor current		Limit switches					
COM3: USB port		[int] peak [A] RMS [A						
~- ID1: MCST-3601 [V 1.3	Run current:	255 0 19 0 1	Left limit switch disa	DIE				
Clobal parameters	Chandles averate		Right limit switch dis	able				
» Global parameters	Standby current:	0.01 0.01						
Parameter calculator	Boost current:	255 \$ 0.19 0.13	3 Microston resolution					
✓Axis 0	Jumper setting:	S Both open	Microstep resolution					
≡ Settings	Veoneo	D high	Microsteps: 16					
* coolStep	vsense:		10					
✓Control mode	Power down delay	10 * *10mc	nable interpolation					
Velocity mode	Uirect mode @	MCST-3601 : COM3-Id 1	×	His Position mode @MCST-3601 [Aa]	<1st motor of 3> : COM3-I			
×Info graph	TMCL Instruction	n Selector		Position control	Velocity ramp control			
Velocity graph	T . Welco	city mode @MCST-2601 [An	I <1ct motor of	Posición conción	velocity ramp control			
= Position graph	Instrui (166) Velo	Lity mode @MC31-3001 [Ad		Actual position: 0	Max. velocity [int]: 100 C			
≺Axis 1	Type: Velocity	Control R	ange Selection	Close	Acceleration [int]: 100 :			
	Motor Actual	velocity [int]: 0		Clean	Dulce divisory			
	Taraat	volocity (int): 1022 *	National Address	Target position: 0 \$		22		
Position mode	Value: larger		ruise divisor: 3	Polativo tou actual postition	Ramp divisor: 7			
✓Info graph	Answe Acceler	ation[int]: 1023 🗘 F	Ramp divisor: 7 🗧	Relative to. actual position	Max. velocity [pps]: 3052			
Velocity graph		H H H F		CAbsolute CRelative Stop	Acceleration [nps2]: 46566			
e Position graph					Acceleration [pps]. (esee			
*Axis z		La Copy to TMCL creator						
Velocity mode			Moro N					
< >			MOLE P					~
 >birect mode @MCST-3601 : COM3-Id >birect mode @MCST-3601 : COM3-Id >birect mode @MCST-3601 : COM3-Id >velocity mode @MCST-3601 [Aa] : CC >bosition mode @MCST-3601 [Aa] : CC >bosition mode @MCST-3601 [Aa] : CC 	1 M3-Id 1 1 M3-Id 1 M3-Id 1 M3-Id 1							î
>Position mode @MCST-3601 [Ad] : CC	M3-Id 1							
➡ >Direct mode @MCST-3601 : COM3-Id	1							~
					TMCL: 343 cmds/sec MEM:	116 448	KB CP	U: 9 %
- O Sono Cortana Chiedim	i qualcosa	i 🗀 🧁			🗙 💦 🕋 🗛 🗖 🖏	ේ ද්යා)	= 11	:27
Sono Cortana. Chiedin	in qualcosa.						17/06	5/2016

Laser control unit functional diagram

Laser control unit schematic diagram

Laser control unit prototype realization

Laser movement control system development

- For a *safe* development of the entire system a low cost and low power (1 mW) laser is used:
 - visible wavelength at 690 Nm
 - acquirable by NIR camera
 - low power emission (1 mW)

Parameter		Units			
0.000000000000	213-3562	213-3590	213-3584	213-3607	
Nominal wavelength	635	670	635	670	лт
Maximum power output	1	0.8	3	3	mW
Typical power output stability (@20°C)	<3				%
Typical power output temperature dependence	15				µW/C
Operating voltage		Volts			
Typical operating current at minimum voltage		mA			
Typical operating current at maximum voltage	68				mA
Power supply rejection ratio (50Hz-100kHz)	1			%N	
Mean time to failure (MTTF) @30°C	4,500	20,000	4,500	20,000	Hours
Connections	1 3				
Red lead	+ve supply				
Green lead	0				Volts

Osela Laser tests: welding effect

- Ex vivo tests in porcine eyes
- Different cut shapes

Surgical cut (parallel to lamellar planessimulating lamellar keratoplasty) ICG staining

Surgical cut (half depth- simulating PK) ICG staining

Comparison with old tests (manual laser, fixed target)

Laser source tests: H&E evidence of welding effect

Laser output characterization- Thorlabs laser

L808P1000MM multimode 1W 808 nm laser diode LDC220C constant current/power laser driver + support & lens

Arduino controller + DC934A DAC Highly linear response

Laser THORLABS

Arduino controller + DC934A DAC Highly linear response

Laser output characterization

Ex vivo tests demonstrating effective welding

Laser spot optimization

The control system

The robotic platform will provide a graphical user interface (GUI) allowing the surgeon to operate from a remote console. The surgery procedure will start enabling the control system of the robotic arm to adjust the position and the orientation of the suturing end-effector just above the patient's eye.

The laser module will be autonomously positioned by the robotic arm by using a Visual Servoing (VS) control scheme

LA-ROSES robotic platform control strategy definition

Welding trajectory detection

The control system will detect and calculate the welding trajectory; then all the system parameters related to the welding process will be proposed to the surgeon check, before enabling the start command.

Surgeon direct control

However, the corneal welding task will not be fully autonomously executed by the robotic platform control system: the surgeon will have a direct control of the surgical procedure.

"Collaborative" human-robot control paradigm

- Surgeon robotic welding-task supervision: robot executes the welding task while the surgeon controls and adjusts (if needed) robot movements and laser parameters
- Surgeon and robot can immediately stop the running welding-task. Human expert like a surgeon is, is more capable to handle unexpected scenarios, as opposed to an autonomous robot; at the same time, the robot control system could autonomously decide to stop the task in case of coming out about dangerous situations to preserve patients' health.

LA-ROSES final realized system HW overall

diagram

LA-ROSES final realized system SW overall

diagram

Preliminary LA-ROSES visual servoing control scheme implementation

Preliminary LA-ROSES visual servoing control

scheme implementation

«Cornea» path

Preliminary LA-ROSES visual servoing control

scheme implementation

Cornea and laser spot detection

LA-ROSES final GUI implementation

LA-ROSES final GUI implementation cont.

Tracing of LASER treated corneal wound

