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Executive summary 

The sensory system, the patient model and the training scenarios are strongly interlinked., 

however training scenarios are described in deliverable D5.3 in separate document. Both 

deliverables are public prototypes and this document provides a detailed summary of the 

prototypes of the sensory system and the patient model and their verification. 

This deliverable deals with prototype and final systems for acquisition of physiological data, 

development and testing of the patient model, and integration of the sensory system with 

the LINarm++ device.  

The sensory system consists of custom-designed components and its performance was 

compared against the state-of-the-art equipment already available at UL (g.USBamp 

biosignal amplifier and sensors for measuring physiological and physical parameters). 

The patient model was developed as a decision tree with four decision layers. From top to 

bottom layers the reliability of information for taking the decisions decreases. Therefore, the 

final layer has the smallest effect on the output of the patient model. 

System validation was performed on a HapticMaster robot with a force sensor. Experiments 

served to a) acquire a set of measurements to test the patient model, b) determine, test and 

verify the configuration of embedded-and-wearable sensory system and c) develop and 

verify training scenarios for the LINarm++ system. Healthy subjects were involved in 

preliminary pilot trials with the proposed setup. 
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Introduction 

Rehabilitation robots are devices that assist the recovery of patients whose motor functions 

are impaired as a result of stroke, spinal cord injury or other condition. Their benefit is 

twofold. First, they offer accurate sensors for measurement of forces and positions, thus 

providing a method of objectively evaluating the patient’s motor performance. Second, 

robots with active motors can help the patient train simple or complex movements, taking 

some of the strain off therapists. Training with such robots yields long-term results 

comparable to exercise with a therapist. Frequently, they are combined with virtual 

environments in order to make rehabilitation more interesting and motivational. 

Several rehabilitation systems based on different robots were developed, such as the MIT-

Manus, a 2-degree-of-freedom system that supports planar movements using an impedance 

controller, the GENTLE/s based on the HapticMaster robot or the ARMin. However, while 

early rehabilitation robots were able to provide active assistance to the patient, they did not 

adapt their movement to the activity (or passivity) of the patient. Rather, the affected limb 

was moved along a predefined, fixed trajectory. The patient was also not informed about his 

or her activity and contribution to the movement. This problem was addressed by patient-

cooperative or “assist as needed” control techniques. By recognizing the patient’s 

movement intentions and motor abilities, patient-cooperative techniques adapt the robotic 

assistance to the activity (or passivity) of the patient. Recently, the concept of patient-

cooperative robotics has been extended to biocooperative robotics within the MIMICS EU 

project, which take into account not only the bidirectional flow of energy between the 

patient and the robot, but also psychophysiological factors. In a biocooperative 

rehabilitation task, the parameters of the task are automatically adjusted so that the patient 

is challenged in a moderate but engaging and motivating way without causing undue stress 

or harm. The implementation of biocooperative control within the MIMICS project was 

relatively cumbersome with physiological sensors attached to the patient’s body. At the 

same time psychological state was found challenging to estimate. However, physiological 

responses still provided an important insight into patient’s state during the training. 

Within the LINarm++ project the main focus was on the development of unobtrusive sensing 

technologies for measurement of physiological responses of patients during training with 

the robot and the use of this information to adapt the training program. Control of a robotic 
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device relies on high quality measurements. At the same time quality of rehabilitation 

depends on good assessment of patient’s performance and adaptation of the training 

protocol to the patient’s needs. The most relevant physiological parameters to be measured 

are: 1) heartrate, 2) galvanic skin response (skin conductance), 3) skin temperature (at the 

finger or similar location), 4) electromyography of arm muscles to provide more insight into 

the subject’s voluntary physical activity. 

LINarm robot and sensor integration 

The LINarm robot is an assistive device for the rehabilitation of the upper limb, specifically 

designed to minimize the overall realization costs to enable rehabilitation exercises at home. 

It features a variable stiffness mechanism, making it possible to adjust the level of assistance 

by modifying the manipulandum mechanical stiffness on the basis of the actual 

requirements of the therapy.  

The sensor setup was optimized to be low-cost and unobtrusive. Therefore, most of the 

sensors were embedded directly into the robot mechanism. Sensors embedded in the robot 

itself already provide information about the arm (hand) position, velocity and interaction 

force (including grasping force) between the robot and the patient. The acquired 

information provides an insight into the physical interaction between the robot and the 

patient (supporting forces, exchange of power).  

The interface between the patient and the robot is the handle that provides the most 

suitable location for integration of physiological sensors (Figure 1). In this way the patient is 

not disturbed by the measurement procedure.  

The robot measurement system can also be augmented with simple wearable sensors 

attached to the patient to complement information from the embedded sensors in the 

robot itself. The wearable sensory system consists of magneto-inertial, small, lightweight, 

wireless and battery powered devices that allow natural human movements. The output of 

the system completes the kinematic model of the upper limb that includes shoulder and 

elbow angles (used to properly activate electrical stimulation). 

All sensors are interfaced to the control computer. Sensors signals are processed on a low 

cost hardware meaning that complexity of processing algorithms needs to be limited. The 
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sensors outputs are used as the input into the patient’s model (together with kinetic and 

kinematic measurements). 

 

 
 

Figure 1 LINarm device with the handle as the main interface between the robot and the patient 

Technological challenges 

The integration of physiological sensors within the handle results in various technological 

challenges related to non-static measurement conditions. Sensory system and its output are 

influenced by movement artefacts. Patient’s grasping force on the handle changes during 

training, arm configuration changes due to robot movements and contact area between the 

hand and the handle is not constant. At the same time the handle must be ergonomically 

designed and should fit to patients with various hand sizes. Two handle shapes were 

implemented; a cylindrical and a hemispherical shape were found to be most suitable for 

majority of applications. Also sterilization of the robot components should be considered. 

The problem is less critical for home use and more critical for clinical use.  

As an alternative to putting physiological sensors into the robot handle several other 

solutions were considered and validated: 1) bracelet with embedded sensors (battery 

powered and wireless – certain modern wrist watches use this concept) did not provide 

reliable information about all physiological parameters, 2) measurements conducted on the 

resting arm (sensors embedded into a form of handle was considered) was considered and 

can easily be implemented with the current design of the sensory system, 3) bimanual 

measurement of physiological signals was considered and partially implemented for 

measurement of ECG signal. 
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Embedded-and-wearable sensory system 

A low-cost embedded and wearable system for measurement of physiological signals was 

developed and validated. Three versions of the system were used during the project: 1) 

state-of-the-art g.USBamp biosignal amplifier and sensors for measuring physiological and 

physical parameters, 2) a custom designed prototype system and 3) the final version of a 

custom designed system. 

System design 

System design included sensor architecture and the design of an ergonomically-shaped 

handle. 

Sensor Architecture 

Full sensory system architecture is illustrated in Figure 2. Different analog conditioning 

circuits are used to acquire person's physiological signals. 

Single-lead electrocardiogram (ECG) monitor circuit was designed for measuring heart rate 

(HR) and heart rate variability (HRV). For the purpose of unobtrusive measurement, we used 

dry stainless steel electrodes also commonly found in ECG monitors for home use. 

For measuring electrodermal activity (EDA) we designed a circuit using a nonlinear feedback 

automatic bias control with low-power operational amplifiers (TLC274 by Texas 

Instruments), also utilizing dry Ag/AgCl electrodes. 
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Figure 2 Overview of the system architecture. Separate analog frontends are locally regulated to ensure stable operating 

voltage. Isolation for this prototype is provided externally, and power is supplied by the USB port. 

 

Conditioning circuit for peripheral skin temperature measurement was designed using a NTC 

glass thermistor (62S3KF354G by Betatherm), connected in a Wheatstone bridge and 

amplified using an instrument amplifier (AD8223 by Analog Devices). 

Since ECG monitors require bimanual measurement, we upgraded the system with a second 

heart rate measurement using photoplethysmography (PPG), using an off-the-shelf sensor 

(Pulse Sensor by World Famous Electronics) in order to test the appropriateness of the PPG 

signal to see if it can be used as effectively as ECG for measuring HR and HRV in different 

task conditions. Next possible upside of adding the PPG sensor can be the additional clinical 

parameters that can be extracted using both ECG and PPG data (e.g. Pulse Transit Time). All 

signal conditioning is integrated on the PPG sensor printed circuit board that, with the 

adequate gain, already produces an analog waveform for digital conversion. 

Additionally, a force cell conditioning circuit was designed to enable the use of grasping 

force measurement. A low-power, high-accuracy instrumentation amplifier with a precision 

reference and differential input amplification (INA125 by Texas Instruments) was used for 

load cell signal amplification. All conditioning circuits had local voltage references to 

produce a stable and noise-free analog voltage. 
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A microcontroller board (STM32F4 Discovery by ST Microelectronics) was used for analog-

to-digital conversion, signal processing, and communication. Power is drawn directly from 

the universal serial bus (USB) port on the local computer, and then locally regulated on the 

board. A-D conversion was made by an integrated 12-bit ADC. Nyquist frequency set at 100 

Hz is sufficient enough for real-time operation, and also to cover most relevant bandwidths 

of physiological signals (EDA, PPG, skin temperature and force signals reside bellow 35 Hz in 

the frequency domain, whereas ECG could extend to 50 Hz or higher). We oversampled the 

analog signals to increase the resolution to 16 bits. After the data has been processed, it is 

communicated via universal asynchronous receiver/transmitter (UART), through UART to 

USB data transfer interface (FT232 by Future Technology Devices International), and finally 

passed to the local computer through the use of external isolation (USB to USB isolator by 

Baaske Medical). Isolation is needed for safety and for reduction of measurement 

interference. 

Handle Design 

To enable an inconspicuous and unobtrusive measurement of physiological parameters, 

sensors have to be placed at the point of the haptic interaction between the robot and the 

human, thus the electrodes and sensors were integrated in the robot handle. Two 

mountable robot handles with different shape were developed for this purpose: one 

cylindrically-shaped (c-handle) and one hemispherically-shaped (s-handle) handle as 

presented on Figure 3. 
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Figure 3 Handle designs with integrated physiological sensors. (a) Cylindrical shape (c-handle). (b) Hemispherical shape 

(s-handle). 

 

After a preliminary study of comfort in rehabilitation task within the laboratory staff, s-

handle showed much better results regarding comfort than the c-handle. However, the 

cylindrical shape is more universal, and can be easily used in different orientations, for 

different rehabilitation tasks, enabling grasping force measurements. 

Electrodes and sensors were integrated to the handles in a way, to be as intuitive and 

inconspicuous as possible. The person should be able to grasp the handle with no special 

care, not needing to focus on the sensors and electrodes during task. 

Predicted measurement locations are illustrated on Figure 4. EDA measurement is made 

through Ag/AgCl electrodes positioned in such a way that distal phalanges of the second and 

fourth finger cover the entire surface of the electrode. PPG measurement is made by 

covering the Pulse sensor with the distal phalanges of the third finger. Peripheral skin 

temperature is measured at the distal phalanges of the fifth finger. Finally, stainless steel 

electrodes for measuring ECG, are appropriately positioned on the handle, enabling contact 

with proximal/thenar palmar surface. 

A second (static) handle was added to the system, to ensure the bimanual measurement of 

the ECG was possible, and additionally to provide a bimanual frame of reference for the 

person, during the physical control task. The second handle, which was designed for the 
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right hand, is hemispherically-shaped for best ergonomic fit, and includes only the stainless 

steel electrodes. 

C-handle was designed and 3D-printed in the Laboratory of robotics, while s-handle was 

hand made for best ergonomic fit out of expanded polystyrene. 

 

 

Figure 4 Predicted measurement locations for both left and right palms at time of interaction with the robot. Left (active) 

hand is interacting with the robot and is simultaneously being measured for physiological response at the handle. Right 

(passive) hand is resting on the static handle, populated only by the ECG electrodes. 

 

Measurement of arm kinematics during training with the robot 
In order to measure arm kinematics during rehabilitation inertial measurement units are 
placed on the forearm and upper arm of the affected limb as shown in Figure 5. This 
information can be used for controlling functional electrical stimulation and to estimate 
quality of upper arm movements. 



11 

 

Figure 5 Inertial measurement units (IMU) placed on the forearm and upper arm for measurement of arm kinematics 
during robot supported training. 

 

Experiments with the prototypes of low-cost and embedded sensory system  

Experiments with the proof-of-concept system and two prototypes of low-cost sensory 

system were conducted on 23 healthy volunteers. The experimental setup is shown in Figure 

6. A mathematical model of inverted pendulum was implemented in a virtual environment 

as the physical control task. The inverted pendulum is an inherently unstable system without 

control, so the participants had to balance the pendulum by applying a virtual force to the 

cart (robot end-effector). The amount of force needed and the pendulum dynamics were 

adjusted through the mathematical model by changing the parameters such as gravity, 

friction, damping, mass, and pole length. If participants did not manage to stabilize the pole, 

the pole was reset to the vertical position after the cart was brought back to the middle of 

the screen. All robot movements and haptics were limited only to the x-axis (horizontal axis) 

of the robot, to enable a 2-D rehabilitation task and to simplify the experiment. 

In order to create different physical conditions in physical control task, mass of the cart was 

changed between two values (mass at high physical load was set to 5 times higher in 

comparison to low physical load). Different dynamic conditions were created by changing 
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the length of the pole between two values (high dynamics were set at one third of the 

length of the pole at low dynamics). With high physical load the robot produced larger 

reaction forces at the end-effector for person to move the cart. With high dynamics, the 

pendulum reacted much faster to the cart movement, also falling much faster. In this 

condition participants had to react faster in order to balance the pole. This way, two 

conditions were permuted to create four different tasks: 

• Task 1 (T1): low physical load and low dynamics, 

• Task 2 (T2): low physical load and high dynamics, 

• Task 3 (T3): high physical load and low dynamics, and 

• Task 4 (T4): high physical load and high dynamics. 

These experiments served three purposes: 

• to test and verify the configuration of embedded-and-wearable sensory, 

• to finalize the algorithms for signal processing for analysis of physiological 

measurements, 

• and to collect base for developing the patient model. 

 

 

Figure 6 Experimental setup: robot manipulator, virtual reality task screen, PC for data acquisition, along with reference 

and newly developed physiological measurement systems. 
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Performance and Biomechanical Measures 

Performance was evaluated with parameters, such as success rate, mechanical work, and 

mean frequency of position signals. Success rate is determined by counting how many times 

the pendulum has fallen during the task. Subjects with better balancing will have a lower 

count than others. Also under the task condition with low dynamics, subjects should in 

general have a lower count than at the high dynamic condition. Total mechanical work is 

calculated as the sum of all work increments, calculated as a dot product of position and 

force signals from the robot. Since the task was designed for single degree of motion 

(horizontal movements), we are calculating forces and work using data only from horizontal 

movements. In this case, both vectors are always aligned, and both position and force can 

be either positive or negative and the work increment will always be positive. Total work 

should increase through the tasks, especially in tasks with greater physical load. Mean 

frequency of position signals was calculated to confirm the effect of the high dynamic 

condition, and should increase when high dynamic condition is active. Mean frequency was 

calculated using Welch's power spectral density estimate. 

Physiological Parameters 

Physiological recordings were obtained from both handle and reference measurement 

system for every subject. After the experiment, signals were processed offline for 3-min 

periods of both baseline and task, from which several standardized parameters were 

extracted for each period. 

From ECG recordings, the mean heart rate was calculated as a mean value of time 

differences between consecutive RR peaks in the QRS complex. Additionally, two 

standardized HRV parameters were also extracted: the standard deviation of successive NN 

intervals (SDNN), and the square root of the mean squared differences of successive NN 

intervals (RMSSD). ECG processing algorithm is the same for both bi-manual measurement 

and the reference ECG recording. A HRV signal was produced by cubic spline interpolation of 

consecutive HR values, for determining the correlation of the HRV information between 

systems. 

Same parameters (mean heart rate, SDNN and RMSSD) and same HR signal were extracted 

from the first derivative of the PPG signals. 
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EDA recording can be decomposed into two separate components: a low frequency (tonic) 

component and a higher frequency (phasic) component. The tonic component describes the 

overall skin conductance over a longer period of time and is obtained by filtering the raw 

signal with a low-pass filter with a cut-off frequency of 0.1 Hz. Similarly, the phasic 

component was obtained by high-pass filtering of the raw signal with a cut-off frequency of 

0.05 Hz, to observe the higher frequency fluctuations of skin conductance that are 

modulated on top of the slower tonic component. From the tonic component mean skin 

conductance level (SCL) parameter is extracted. Skin conductance responses (SCRs) are a 

quantitative measure of skin conductance fluctuations in a period of time. SCR frequency 

was calculated for the duration of baseline and task periods. 

Final skin temperature was calculated as an average peripheral skin temperature of the last 

two seconds of each task period. 

Several dedicated graphical user interfaces (GUI) were developed for complete processing 

and analysis of acquired physiological signals (see Figure 7). GUIs were designed modularly, 

providing the possibility of separately reviewing raw sensor signals and calculated numerical 

parameter values. This can provide inter-handle, inter-session, and inter-subject data 

comparison.  

 

 

Figure 7 Graphical user interface with acquired signals. 
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System validation against a reference measurement system 

Results for signal similarity can be seen in Figure 8. Pearson’ correlation coefficients (PCCs) 

were calculated between reference system and handle signals for both handles. S-handle 

showed better correlation for most of the signals through all four tasks, except for PPG HR 

curve that showed higher correlation for c-handle for all tasks. 

For EDA signals (Figure 8 (a)), median values of PCCs in baseline are higher for c-handle and 

for s-handle than in task. A significant baseline-task correlation reduction p < 0.05 was found 

for tasks T1, T2 and T4 of s-handle results, others were not significant. 

For skin temperature (see Figure 8 (b)), median values of PCCs showed a reduction in 

correlation for T1 and T4 for c-handle and T4 for s-handle. Increase in baseline-task 

correlation was found for T2 and T3 for both handles. A significant difference of baseline-

task correlation (p < 0.05) was found for T1 and T4 of c-handle results, others were not 

significant. 

For ECG HR extracted signals (see Figure 8 (c)), median values of PCCs showed high 

correlation in both baseline and task periods for both handles. For both handles, a 

significant difference of baseline-task correlation (p < 0.01) was found for T2. 

For PPG HR extracted signals (see Figure 8 (d)), median values of PCCs showed high 

correlation in T1, T2 and T3 for all three tasks and both handles. Significant difference of 

baseline-task correlation (p < 0.05) was found for both handles in T4. 
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Figure 8 Raw physiological waveforms (left) and Pearson's correlation coefficients for all tasks are represented as box 

plots (right): Electrodermal activity (a), Peripheral skin temperature (b), ECG HR signal (c), and PPG HR signal (d). Gray 

lines are connecting the median values of Pearson's correlation coefficients in tasks to better illustrate the correlation 

trend between different tasks. B and T are marking baseline and task period for each of the four tasks respectively. 

Final version of the embedded-and-wearable sensory system 

The knowledge and experiences obtained from the ptototype sensory system for 

measurement of physiological signals were used for the design of the final version of the 

system. The final design takes into account the system performance, size limits for the 

electronics and most importantly safety aspects required for medical grade devices. 

The aim is to measure physiological parameters: heart rate and its variability (using 

electrocardiography and photoplethysmography), electrodermal activity, and peripheral skin 

temperature. Full sensory system architecture is illustrated in Figure 9.  Different analog 

conditioning circuits are used to acquire person’s physiological signals. All circuits in contact 

with the human are isolated in two stages in order to guarantee safety and to enable 

medical device certification. A microcontroller board (STM32F4 Discovery by ST 
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Microelectronics) was used for analog-to-digital conversion, signal processing, and 

communication. Power is drawn directly from the universal serial bus (USB) port on the local 

computer, and then locally regulated on the board. A-D conversion was made by an 

integrated 12-bit ADC. With Nyquist frequency set at 100 Hz will be sufficient for real-time 

operation and also to cover most relevant bandwidths of physiological signals (EDA, PPG, 

skin temperature and force signals reside bellow 35 Hz in the frequency domain, whereas 

ECG could extend to 50 Hz or higher). 

 

Figure 9 Block diagram of the final version of low-cost measurement system for measurement of physiological signals 

 

In order to fit into both types of handles, the electronics is designed in a circular shape. Figure 10 

shows the printed circuit board of the final version of the electronics system for acquisition of 

physiological signals. Figure 11 shows 3D models of bottom and top layer of the board. Figure 12 

shows combined cad models of the handle and the electronics. 
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Figure 10 Printed circuit board of the final electronics. 

 

  

Figure 11 Bottom and top 3D model of the printed circuit board. 
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Figure 12 CAD model of the handle and the electronics. 

 

 

Patient model 
Patient model provides the core functionality for adaptation of training to individual 

patient’s needs. The task can be adapted in terms of motor and cognitive challenges. Motor 

challenge influences the required patient’s motor activity. Cognitive challenge is adjusted 

using questions or cognitive tasks (such as mathematical tasks) that are divided into two 

distinctive levels by difficulty. Cognitive tasks are taken from established psychological test 

used to test the cognitive load. The level of cognitive challenge is adjusted based on user’s 

score. A fixed threshold is used to change the difficulty of the cognitive task. If user answers 

correctly a series of cognitive tasks (usually three in a row) the difficulty is increased and vice 

versa if user answers a series of tasks wrongly the difficulty is decreased. 

The model integrates clinical information about the patient with the automatic observations 

of patient’s activities during the training with the LINarm++ device. The model is divided into 

two sub-models: 

– Patient performance model estimates various parameters related to physical activity 

and task performance. 
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– Physiological model fuses data from sensors (embedded into the handle), which 

measure physiological signals. Outputs are parameters summarizing the information 

about the physiological state of the user. The main focus is on observation of trends 

of physiological parameters in order to optimize training activity. 

Outputs of patient model are not analyzed only in terms of absolute parameter values, but 

more importantly they are analyzed in terms of trends of signals. Based on that training 

settings should be optimized in order to keep the parameter values within the adequate 

boundaries. 

Patient model algorithm 

During this period the patient model was developed and evaluated with data collected with 

healthy subjects. Patient model is organized in a structure of the decision tree (see Figure 

13) with four distinctive layers of nodes: 

• Clinical Observation layer is based on computation of Clinical Observation Index 

(COI).  

COI is set by clinician prior to training. This observation is very reliable and 

meaningful to clinical staff. Therefore, it has the highest priority in the model. Based 

on the criterion patients are grouped in three slightly overlapping categories (those 

that need high robot support with assistance value a>0, those that do not need 

support at all with the assistance value a<0, and the intermediate group).  

• Task Performance layer is based on computation of Task Performance Index (TPI). 

TPI is calculated from various parameters related to performance in the particular 

game (score, time to complete the task, number of errors). It provides a very reliable 

and objective measure of general patient’s performance. Therefore, the second layer 

of decisions is based on the TPI. Patients are further divided into two subgroups 

based on the TPI. 

• Motor Performance layer is based on computation of Motor Performance Index 

(MPI).  

MPI is calculated from various parameters related to movement and force. Values 

such as power, velocity, interaction force, grasp force, movement smoothness, 

deviation from ideal trajectory, and robot support are calculated in real time from 



21 

the force and position sensors mounted on the robot. The values provide an 

objective measure of patient’s motor performance. These values are used in the 

third layer of the decision tree in order to further differentiate between individual 

patients. MPI is reliable as TPI. However, patients with lower MPI can still accomplish 

training tasks. Therefore, MPI was placed lower in the decision tree. Patients are 

divided into additional two subgroups based on the MPI. 

• Physiological layer is based on the computation of the Physiological Trend Index 

(PTI). 

PTI is calculated from various parameters measured by physiological sensors (heart 

rate, heart rate variability, temperature, skin conductance response, skin 

conductance level – all the parameters are differences between baseline levels and 

levels measured during the task). These values provide a good insight into the 

patient physiology and potentially also psychology that is not considered here. In 

terms of motor rehabilitation, they are the least reliable. Therefore, the decision 

based on physiological parameters is placed in the lowest level on the decision tree. 

Patients are divided into the final subgroups based on the PTI. 
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Figure 13 Part of  the decision tree of the patient model. 

 

Each Index is linear combination of the parameters used to calculate the index. Index is 

limited to values between 0 and 1. The weights for parameters included into calculation of 

the particular index are determined algorithmically by using linear classifiers (e.g. Linear 

discriminant analysis, Naïve Bayes classifier). This requires learning set which is gathered 

using preliminary experiments with fixed values of difficulties. 

Example for PTI is given with the following equation 

PTI=s∙∆HR+t∙∆HRV+u∙∆T+v∙∆SCR+w∙∆SCL, 

where s, t, u, v, and w are weights determined using linear classifier, ΔHR is difference in 

heart rate between baseline measurements and measurements during the execution task, 

ΔHRV is difference between heart rate variability during the baseline measurement and 

measurement during the execution of the task, ΔT is difference between temperature 

during the baseline measurement and measurement during the execution of the task, ΔSCR 
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is difference between skin conductance response during the baseline measurement and 

measurement during the execution of the task and finally the ΔSCL is difference between 

skin conductance level during the baseline measurement and measurement during the 

execution of the task. 

Assistance level is then calculated with the following equation  

a=amax - (amax - amin)∆, 

where a is assistance level, amax and amin are upper and lower bound of assistance level for 

particular case and Δ is the normalized distance of the object from the target. Since 

parameter Δ changes from value 1 when the object starts to fall down to 0 when object 

reaches the target, assistance level a changes linearly from assistance level amin to amax. The 

rationale for this is that the assistance level needs to change depending on the distance of 

the object from the target. If the patient is not able to move the object to the target using 

the assistance level amin in time the robot will increase the assistance level to level amax. 

Parameters amax and amin are outputs from the decision tree structure of the patient model. 

At each level both parameters are outputted from the model.  

This section explains the basics of the patient model on an example of one healthy subject. 

Each node branches based on values of individual parameters (see Figure 14). Output of the 

Patient model is minimal and maximal value of assistance parameter a which determines 

the level of assistance.  

COI = 3 amin = -1, amax = -0.2  

TPI = 1 amin = -1, amax = - 0.5 

MPI = 0.35 amin = -0.8, amax = -0.5 

PTI = 0.33 amin = -0.7, amax = -0.5 

 

The subject was assigned with Clinical Observation Index 3, which branches for assistance 

range between -1 and -0.2. Subject achieved Task Performance Index 1, which branches into 

assistance range from -1 to -0.5. In the next layer the Motor Performance Index equals 0.35. 

The resulting a range is -0.8 to -0.5. In the last layer the Physiological Trend Index is 0.33, 

which outputs the final range of a parameter. For this subject the PTI is 0.33 and the 
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resulting a range is -0.7 to -0.5. The assistance index is negative. This means that the robot 

does not need to provide support to the healthy subject. However, this subject did not 

perform very well. Therefore, the task challenge remained moderate. 

 

(a) Number of fallen pendulums 

 

(b) Level of work during the task 

 

Figure 14 Figure shows examples of two parameters for the task. Figures show median value and dispersion for 22 

healthy subjects that played the inverted pendulum balancing task. Parameter of Number of fallen pendulums was used 

to calculate Task Performance Index, while parameter Work was used to calculate Motor Performance Index. Red 

horizontal line over all four boxplots is the threshold for branching in next level of the patient model. 

 

Validation of patient model 

Validation of the patient model was done using the Stroop game. Experiments were 

performed on 10 healthy subjects and were divided into two parts: 1) Increasing difficulty 

and 2) Adaptive difficulty using a simplified patient model. 

Each part started with 2 minutes of baseline measurements when subject needed to rest. 

During the baseline measurements a baseline values of physiological signals were collected.  

Figure 15 shows normalized velocity of the falling words during both experiments.  
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Figure 15 Figure shows velocity of the falling words during the experiments. 

 

Increasing the difficulty 

The aim of this experiment was to determine how various parameters which are included 

into calculation of indices used in patient model change in relation to different levels of 

difficulty. Based on the results of this experiments all parameters in patient model will be 

updated to create a final version of the patient model. 

Difficulty level of the game was changed by increasing the speed of words that were falling 

from upper edge towards the colored clouds in steps from lowest speed to highest speed. 

Seven different speed values were used for seven difficulty levels. Each difficulty level lasted 

1 minute; therefore, the whole experiments for rising difficulty lasted 9 minutes (2 minutes 

for baseline + 7 minutes for 7 levels).  Figure 15, left subfigure, shows the normalized 

velocities of the falling words during the experiment which was increased in steps from 0.6 

to 1. 

Adaptive difficulty using a simplified patient model 

In this experiment the aim was to test the patient model. The patient model was simplified 

as Clinical Observation Layer and Physiological layer were excluded from the model. Since all 

the subjects were healthy subjects they would all receive same Clinical Observation Index. 

The Physiological layer is lowest layer of the patient model and therefore does not change 

the assistance parameter significantly. The aim of the patient model was to change the 
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difficulty in such a manner that the performance of the user remains relatively constant 

throughout the whole experiment. 

Experiments with adaptive difficulty lasted 5 minutes (2 minutes for baseline measurements 

and 3 minutes for adaptive part of the experiment). 

Results 

Several parameters were tested and the results will be explained in this section. Figure 16 

shows the parameters measured during the experiments for ten subjects. First column 

designated Increasing shows results for experiments where difficulty was increased in from 

lowest difficulty level to highest difficulty level. Work is calculated from speed of movement 

and applied force by the user in fixed time window. The second column designated Adaptive 

shows results for experiment with adaptive difficulty using a simplified patient model. First 

row shows success parameter and shows number of correctly placed words in correct 

clouds. Second row shows work performed by the user. Third row shows parameter Pmnf, 

which is position mean frequency. Pmnf is the average frequency of the signal, and is 

calculated by dividing the sum of frequency bin and power spectrum products by the sum of 

the whole power spectrum (total power) of the signal: 

 

Parameter Pmnf is related to speed with which the user moves the robot. Higher value 

means higher activity of the subject. 

Fourth row shows parameter Ftpf, which is total power of force signal. Total power is 

calculated by summation of the entire power spectrum, in our case by summation of the 

Welch's power spectral density estimate. 

 

Vertical red lines indicate the end of baseline measurement and the start of the game. 

Horizontal red lines show the thresholds for various parameters which were used in patient 

model. 
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Figure 16 Figure shows various parameters for patient model validation experiments. 

Task performance index 

Task performance index is calculated from the success rate. Success rate is calculated as 

percentage of correctly placed words into correct clouds. Figure 16, top row, shows values 

for success rate. For increasing difficulty experiments it can be seen that success rate 

decreases when difficulty increases. In the beginning of the experiment when difficulty level 

is low more or less all the subjects were above 90% of success rate. After 400 s the success 

rate drops, although some subjects did perform very good also at highest difficulty level. At 

adaptive experiment it can be seen that success rate is constant and is in general at level 

typical for higher difficulty levels from beginning of the experiment to the end of the 

experiment. The threshold for success rate was set to 85%. 

Motor performance index 

Results show that the most important parameters are: (1) Work, (2) Pmnf and (3) Ftpf. 

Figure 16, second row, shows the work during the experiment of increasing the difficulty. 

From the figure it is clearly seen that work performed by the user increases with the 
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increased level of difficulty. Figure 16 shows the work during the experiment where the 

difficulty was adapted using the patient model. From the figure it can be seen that the work 

fluctuates around constant value, which was the aim of the experiment. The fluctuation is 

expected since the parameters need to change so that the patient model can either increase 

or decrease the difficulty based on results in last time window. Similar observations can be 

made for Pmnf and Ftpf parameters.  

Figure 15, right subfigure, shows the velocities of the falling words during the adaptive 

difficulty experiment. Typically, the velocity was high at the beginning of the experiment. If 

the velocity and therefore the difficulty level was too high, patient model decreased the 

difficulty level, which corresponds to lower velocity. This usually resulted in slight increase of 

the success rate, but more importantly the Motor performance index decreased since 

subject was less active because the words were falling slowly. In next time interval patient 

model typically increased the difficulty.  Since success rate was high most of the time Motor 

Performance Index had the most impact on the chosen difficulty level. 

Physiological trend signals 

First inspection of the results showed that the subjects that participated in the experiments 

can be divided into two groups based on how their temperature changed during the 

increasing difficulty experiment:  

• group 1 – subjects with positive trend of temperature and 

• group 2 – subjects with negative trend of temperature.  

Coincidently both groups were the same size of 5 subjects. 

Figure 18 shows the result for group 1 and Figure 17 shows the results for group 2. Each 

figure has two columns (left is for increasing difficulty experiment and right column is for 

adaptive difficulty experiment).  

While for group 1 in increasing difficulty experiment we can hardly notice any trends of 

change in physiological signals group 2 shows distinctive trends which can be correlated 

with the increased difficulty of the task.  
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Increasing difficulty experiment 

Heartrate in group 2 is increasing proportionally with the increased difficulty: higher the 

difficulty higher is the heart rate. Since also work performed by the user is increasing with 

the difficulty it can be expected that heart rate will increase and results support that for 

group 2. Temperature is decreasing (see Figure 17 first column second row). Parameters of 

skin conductance (SCL, SCR frequency and SCR amplitude – see Figure 17 first column rows 3 

to 5) are all increasing from the baseline values. SCL changes significantly in the beginning of 

the experiment when the difficulty is still low, and then only slightly with increasing 

difficulty. SCL seems also to be the only parameter that increases in group 1. Other 

parameters remain relatively unchanged compared to baseline values in group 1. This 

parameter is therefore suitable to detect early changes in difficulty. In contrast SCR 

parameters change significantly during the highest difficulty and are therefore suitable to 

detect higher difficulties. 

Adaptive difficulty experiment 

Second column in Figure 17 and Figure 18 shows the results of the adaptive difficulty 

adaptation for physiological parameters. In group 2 heart rate increases (see Figure 17, 

second column, first row) after the beginning of the experiment and it stabilizes in the 

second half of the experiment. In group 1 heart rate does not change during the experiment 

compared to baseline values. Again groups react differently when it comes to temperature 

parameter. In groups 2 temperature slightly, but not significantly increases during the first 

half of the experiment, but remains mostly constant compared to baseline values. 

Compared to group 2 the temperature parameter in group 1 increases significantly in the 

second part of the experiment. Skin conductance parameters for group 1 and group 2 

behave similarly. After the beginning of the experiment the parameters values increase 

compared to baseline values and after the second half of the experiment they remain 

relatively constant. This shows that the difficulty settings determined by the patient model 

were set appropriately.  
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Figure 17 Physiological parameters for subjects of group 2. 
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Figure 18  Physiological parameters for subjects of group 1. 

 

Integration with the LINarm device 

The sensory system for measurement of physiological signals was successfully integrated 

with the LINarm++ device. The integration was accomplished on the level of mechanical 

interfaces, electrical connections as well as communication protocols. The main device 

controller has access to all sensor data that are included in the control of the device. With 

the integration of the sensory system also the patient model was transferred from the 

prototype system based on the HapticMaster robot to the LINarm++ system. The two 

versions of the integrated system are shown in Figure 19. 
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Figure 19 Integration of the sensory system with the LINarm++ device. The left figure shows the integration of the 

cylindrical handle; the right figure shows the integration of the hemispherical handle. 

 

The integrated system was validated with the training scenarios presented above (see Figure 

20). All functionalities were transferred from the prototype system that was based on 

HapticMaster robot. The only difference between the two robots is a slightly lower dynamic 

bandwidth of the LINarm++ device due to the variable impedance actuator.  

 

Figure 20 Validation of the integrated system with the tracking game scenario. 
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Conclusions 

The sensory system for measurement of physiological signals was developed, validated and 

integrated with the LINarm++ device. Already the first prototype included custom designed 

electronics for data acquisition and processing. The final system builds on that experience 

and takes into account other factors, such as ergonomics and patient safety. The final 

system will be integrated with the LINarm++ device together with the integration of the 

functional-electrical stimulation system and will be validated with patients in RIF. 

In parallel with the sensory system also the training scenarios were developed which are 

described in deliverable D5.3. Five different training scenarios were developed and tested. 

The scenarios differ in required motor performance. The more advanced training scenarios 

include also adaptive cognitive challenges to make the training more intensive and efficient. 

At least part of training scenarios will be validated with patients after the final integration of 

the system. The training is adapted to individual user needs with the assistance of the 

patient model. Since all system validations until now were performed with healthy subjects, 

the parameters of the patient model are tuned to healthy subjects. These values will be 

adapted to patients’ needs for the final validation of the system. The structure of the patient 

model will be kept as it is now, since it was optimized for patients’ characteristics. 

The designed system provides a low-cost and nonintrusive solution for acquisition of 

physiological signals during a robot-supported motor rehabilitation. The system output 

provides reliable information in most of the training conditions. However, movement 

artifacts can disturb measurement occasionally. This will have no major effect on training. 

The patient model structure is designed in such a way to put more emphasis on the reliably 

collected information about the patient’s performance. 
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