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These degrees of freedom are those required to provide: 

 

 Hip flexion-extension 
 Hip abduction-adduction 
 Knee flexion-extension 
 Ankle dorsiflexion-plantar flexion 
 Ankle eversion-inversion 

 

 

These joint axes are designed to conform the maximum natural movements of the patient. Three of these joints allow 
flexion-extension of the hip, knee and dorsiflexion-plantar flexion at the ankle in the sagittal plane (Figure 2). The 
remaining 2 joints allow movements of abduction/adduction at the hip and eversion/inversion at the ankle in the coronal 
plane (figure 2).    

The choice of these degrees of freedom is determined by the previous study of the needs of the exoskeleton. Actuation 
in the coronal plane is essential to provide the possibility of obtaining active stability of the gait by compensating center 
of mass displacement during natural walk.                                                          

2.2 Joint ranges 

The exoskeleton has mechanical limits that restricts the range of motion at each joint. Mechanical limits have been 
adapted using published studies of joint ranges movements in healthy subjects and physical requirements of the 
exoskeleton for a natural gait, a sitting movement and weight transfer movements during dynamically stable 
locomotion. 

Table 1 shows the maximum joint angles of the exoskeleton. It is important to note that operating joint angles can be 
defined within these ranges of motion by kinematics programming, in case that the patients have retractions or 
limitations on the mobility of their joints. 

Joint Actuation drive Degrees

Hip flexion Rotation drive 110° 

Hip extension Rotation drive 30° 

Hip abduction Linear drive 25° 

Hip adduction Linear drive 10° 

Knee flexion Rotation drive 120° 

Knee extension Rotation drive 0° 

Ankle dorsiflexion Rotation drive 30° 

Ankle plantar flexion Rotation drive 30° 

Ankle eversion Linear drive 16° 

Ankle inversion Linear drive 16° 

Table 1: Joint ranges. 
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5 Conclusions 

An innovative exoskeleton design focusing on adaptability to children growth and ergonomics of SMA affected patients 
has been proposed. A 10-DOF configuration allowing for complete mobility has been chosen. It has been demonstrated 
that the proposed structure could easily adapt to varying sizes while respecting performance goals. The capability to 
perform active balance during walk has been taken into account in the ATLAS 2020 exoskeleton design.    

The design of the assembly poses a number of challenges due to the fact that the small size of the exoskeleton 
increases the risk of collision at the parts. It has been shown that the ergonomics is one of the most critical points for 
proper gait control of the ATLAS 2020 exoskeleton.. It has been determined that balance control algorithm needs fast 
electronics for controlling the actuators and avoiding the exoskeleton to fall. .  
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