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I.  Abstract 
This document provides a description of the integration of the high-level capabilities in the TIREBOT (a TIRE 

workshop roBOTic assistant) platform. In particular, the description of how the high-level capabilities 

developed during Task 3 have been integrated with the robot built during Task 2 is presented. The reader is 

invited to watch the video, attached to this document, which shows the final full working version of 

TIREBOT.  
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II. Introduction 
This document presents a description of how the activities of Task 3 have been developed and how they 

have been integrated with the basic capabilities developed during Task 2 (see Deliverable 2 – Mechatronics 

of TIREBOT). The integration was done during the activities of the subtask 4.1, whose output is a complete 

and fully working version of TIREBOT.  

The integration required a strong cooperation between UNIMORE and CORGHI in order to exploit 

synergistically the experience on wheel processing and the knowledge about robot control and interaction. 

The high-level software architecture implementing the robot behaviour and satisfying the requirements 

and the specifications defined in Deliverable 1 has been implemented.  

Activities of Task 3 (Navigation and Cooperation) aim at implementing TIREBOT’s capabilities as the safe 

navigation of the robot, the safe cooperation with human co-workers, the teleoperation of the robot 

through the haptic device. 

This document is organized as follows: Sec. III reports a description of the high-level capabilities 

implemented on TIREBOT. Section 0 describes how the integration task, which led to the final full working 

TIREBOT prototype, happened while Sec. V reports the description of the integration experiment. Finally, in 

Sec. VI, conclusion are drawn.  
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III. High-level capabilities 
In this section, a full description of TIREBOT’s high-level capabilities is proposed. Unlike Task 2 basic 

capabilities, which aim at implementing low-level abilities for the robot, the implementation of the high-

level capabilities aim at providing TIREBOT with the intelligence needed to cooperate with the human co-

worker and to accomplish its tasks.  

Here is a list of the high-level capabilities implemented on TIREBOT: 

 Navigation: 

o Safe Operator Following: by using the laser scanner and the RGB-D camera, the robot is 

capable of recognizing the user and following her/him, while keeping a safe distance.  

o Planner with Obstacle Avoidance: the robot, thanks to a path-planning algorithm, can 

compute the trajectory that can lead it from a starting point to a goal, by also avoiding 

obstacles thanks to its laser scanner and by building a geometric map (Figure 1) 

representing obstacles and free space 

 

o  Visual Servoing: when the robot is in proximity of a goal, if it detects a special visual 

marker, a visual servoing algorithm computes the relative pose of the robot with respect 

the target and takes the robot in a desired configuration with respect to the marker. 

 Cooperation: 

o Safe Working Condition Recognition: by using the camera and the laser scanner, the robot 

can build a local map of the surrounding environment. If there are no obstacle closer than a 

safety threshold, the robot recognizes the area as a safe working place.  

o Hierarchical Safe Strategy: the robot plans its actions according to a two-layer architecture, 

where each motion must be evaluated in order to satisfy safety conditions of the 

environment surrounding the robot.  

 Teleoperation: 

o Tele/Autonomous Arbitration: When the user interacts with the haptics interface, an 

arbiter switches the behaviour of the robot from autonomous navigation to teleoperation.  

Figure 1: the geometric map. Black areas represent obstacles, grey areas represent free space and red dots represent the laser 
measurements. Dark grey areas represent the unexplored space. 
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o Teleoperation: a user can manoeuvre the robot through a bilateral teleoperation 

architecture. Furthermore, the user moves TIREBOT by means of an haptic device and s/he 

can feel a force feedback proportional to the distance between the robot and the detected 

obstacles.  

In order to better understand how navigation and cooperation work, in the following we propose a 

description of how the Finite State Machine (FSM) of TIREBOT is implemented and how the user can 

interact with the robot. Furthermore, the document also reports a full description of the implementation of 

the safe cooperation and teleoperation. 

TIREBOT’s Finite State Machine 

The behaviour of TIREBOT, while it is operating in autonomous mode, changes according the state the 

robot is in. The robot can change its state by receiving gesture commands by the user or when certain 

events happen (i.e.: the user moves the haptics device). The FSM expects TIREBOT working in the following 

modalities: 

 STAND STILL: the robot stands still on its position and rotates while framing the “master-user”. 

 FIXED GOAL: the robot goes to a fixed goal in the map. 

 WANDER: the robot slowly rotates in place while searching for a “master-user”. 

 MOVING GOAL: the robot follows the “master-user”.  

 HOMING: the robot returns to its home position. 

 WAIT: the robot waits for the wheel to be carried on its forks.  

 STOP: the robot stands still on its position waiting for a command from a user.  

Figure 2 represents the Finite State Machine for the TIREBOT’s Gesture Interaction.  

TIREBOT’s gesture commands 

While in autonomous mode, TIREBOT can change its behaviour by receiving gesture commands from a 

user. According to the arm pose of the user and the state the robot is in it will change its state. 

LEFT/RIGHT DOWN UP SIDE FORWARD 

DOWN UNDEF FOLLOW ME GO TO GOAL “A” STOP 

UP GRAB THE WHEEL I AM THE MASTER ACKNOWLEDGE UNDEF 

SIDE GO TO GOAL “B” STAND STILL STOP FOLLOWING ME UNDEF 

FORWARD RELEASE THE WHEEL UNDEF UNDEF GO HOME 
Table 1: TIREBOT's gesture commands 

Table 1 summarizes the commands TIREBOT can receive by gestures. Here is a short description of the 

meaning of each command: 

 UNDEF: TIREBOT does not recognize this command and will remain in the same state.  

 FOLLOW ME: TIREBOT starts following the user while keeping a safe distance from him.  

 GO TO GOAL “A”: TIREBOT moves towards the goal “A” a-priori defined by the user (i.e.: near the 

tire changer). This command needs to be acknowledged before being executed. 

 GO TO GOAL “B”: TIREBOT moves towards the goal “B” a-priori defined by the user (i.e.: near the 

wheel balancer). This command needs to be acknowledged before being executed. 

 STOP: the robot stops every movement until a user is identified (if the robot has lost its master-

user) and orders it to leave this state. 

 GRAB THE WHEEL: the robot rotates on itself of a 180° angle and will wait 15 seconds for the user 

to load the wheel on the forks. Then the robot lifts the lower fork and, if a wheel is detected by the 
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load cells, the robot actuates the upper fork in order to grab safely the wheel. This command can 

be executed by the robot only if the robot does not already carry a wheel, otherwise an error 

message will be printed on the control station of the robot and the robot will not recognize the 

command. The robot terminates the execution of this command by rotating on itself of a 180° 

angle. 

 RELEASE THE WHEEL: the robot rotates on itself of a 180° angle and will wait 5 seconds for the user 

to get ready to unload the wheel. Then the robot will release the wheel. This command can be 

executed by the robot IF AND ONLY IF the robot carries a wheel. The robot terminates the 

execution of this command by rotating on itself of a 180° angle. 

 I AM THE MASTER: this command is needed to be recognized by the robot as the master-user. The 

robot can recognize this command only if it has not already a master.  

 STAND STILL: with this command, the robot enters in the standard state the robot gets in after 

having identified the master-user and after having terminated the execution of an action. In this 

state, the robot rotates on itself while trying to frame the master-user with the camera, waiting for 

further commands. This command is also used to leave the STOP state.  

 STOP FOLLOWING ME: this command is only used while the robot is in the “MOVING_GOAL” state. 

Through this command, the user can make the robot stop following him.  

 GO HOME: TIREBOT returns to its home position (i.e.: near its recharging station). This command 

needs an acknowledge before being executed.  

 ACKNOWLEDGE: once the user has sent a command like “GO TO GOAL” or “GO HOME”, the robot 

needs an acknowledge to start executing it.  

 

Figure 2: Gesture recognition FSM 
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NAVIGATION 

Free navigation modality is implemented through the “move_base” ROS package1.  

The obstacle avoidance capability is granted by the frontal laser scanner, which can detect obstacles that 

are mapped on an occupancy grid. The obtained map is then used by the ROS node “move_base”; this node 

is responsible for the autonomous navigation of the robot. By using the “Dynamic Window Approach” 

(DWA) provided by the “dwa_planner” plugin, the node computes the optimal path (if it exists) from the 

actual pose of the robot to the given goal. The DWA also avoids static obstacles through a “global planner”, 

that plans the overall path from the actual pose of the robot to the goal, and moving obstacles through a 

“local planner” that moves the robot from the planned path in order to avoid sudden obstacles (i.e. a 

people who approaches the robot while it is moving). 

Navigation has a different implementation according to the kind of goal the robot receives from the user. If 

the user orders the robot to follow him the robot will try to keep its camera framed on the user. The 

skeleton tracker, that recognizes the user, will send the position of the user’s torso to the navigation node. 

The robot will then compute a point at a certain distance from the user’s torso as goal. The robot will keep 

on tracking the user until he orders it to stop.  

When the user orders the robot to go to a fixed goal, the robot starts to search for a visual marker which 

are positioned in the nearing of the goal. Once the camera has framed the marker, the robot will compute a 

position according the code of the marker and will go in that position, while constantly correcting its pose 

in order to be as more precise as possible (visual servoing).  

SAFE COOPERATION MODE 

The safe cooperation is a particular working modality of the robot; during the free navigation, TIREBOT can 

move freely from a position to another by avoiding obstacles according to their position. During 

cooperation with a human the robot should work with a tire workshop operator that, in some phases of his 

job, must work very close to the robot, for example when the operator, once the tire is removed from the 

car, has to load the tire on TIREBOT. In this case, the robot should assist the operator without hindering 

him, moving away if the user has to work in positions occupied by the robot and actuating the wheel 

grabber without harming the human co-worker.  

Standard distance based collision avoidance techniques will always let the robot to move apart when the 

operator gets closer making therefore cooperation impossible. In order to implement a safe and 

cooperative behaviour a novel collision avoidance strategy, based on the Danger Field algorithm that 

depends both on the distance and on the velocity of the detected obstacles is implemented. In this way, if 

the operator is very close but it moves slowly, TIREBOT will detect cooperation and it will not move. On the 

other hand, if the distance is small but the operator moves too fast, TIREBOT detects something wrong (e.g. 

the operator can be escaping from some dangerous situations) and it will move apart to avoid collision with 

the human. 

                                                           
1 http://wiki.ros.org/move_base 
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Figure 3: Safe cooperation during wheel grabbing 

The “safe cooperation” is a super-state that represents the behaviour of the robot when it works close to a 

human operator. We can distinguish this state according to the working phase the wheel is in: for example, 

Figure 3 is the FSM representing the behaviour of TIREBOT when the operator has to load the wheel on it. 

When TIREBOT has approached the area where the operator is, it changes the parameters for the 

navigation. These parameters are the safety distance the robot stays away from obstacles and how the 

position and the speed of obstacles can influence the behaviour of the obstacle avoidance algorithm of the 

robot. In this phase, the robot also decreases its the speed, in order for the robot to be more accurate in its 

movements. Once these parameters are set, the safe cooperation starts: the robot approaches to the user 

that is dismounting the wheel from the car and waits until the operator is ready to load the wheel on the 

robot. If the operator gets too close to the robot or if a moving obstacle, which can be the operator itself, 

approaches the robot too fast, the robot moves away. Once the robot has grabbed the wheel, TIREBOT is 

ready to leave the “safe cooperation” state, it changes back the navigation parameters and enters into the 

“free navigation” mode.  

 

Figure 4: safe cooperation during wheel releasing 

Similarly, Figure 4 represents another kind of “safe cooperation”. In this case, the release of the wheel is 

analysed. Once the robot, which is carrying a wheel, gets in the area near the machine the tire has to be put 

on, TIREBOT changes the navigation parameters in the same way explained earlier in this section. The 

robot, then, approaches the operator that unloads the tire from TIREBOT. As in the previous case, the “safe 

cooperation” expects the robot to move away if an obstacle gets too near or approaches too fast to the 

robot. Once the tire has been unloaded from the robot, TIREBOT changes back the navigation parameters 

and leaves the “safe cooperation” state. 

 

Figure 5: The robot's frames 

free the way

do /move the robot

start safe cooperation

do /set close navigation parameters

safe cooperation

entry /approach to the user

do /wait for the operator to accomplish the wheel managing

exit /grab the wheel

[distance < d* || speed > s*] [distance > d* || speed < s*]

[parameters set == true] stop safe cooperation

do /set free navigation parameters

[end safe cooperation == true]

start safe cooperation

do /set close navigation parameters

safe cooperation

entry /approach to the machine

do /help the user putting the wheel on the machine

exit /release the wheel

[parameters set == true]

free the way

do /mode the robot

[ distance < d* || speed > s*][distance > d* || speed < s*]

stop safe cooperation

do /set free navigation parameters

[end safe cooperation == true]
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Let’s consider a four wheels omnidirectional robot moving in a workshop-like environment (see Figure 5). 

The robot is capable of three possible inputs: shifting forward 𝑣𝑥1, shifting laterally 𝑣𝑥2. The overall 

movement of the robot is a combination of these three inputs. The state of the robot represents its 

position and orientation 𝑥 = [𝑥1, 𝑥2, 𝜗]𝑇. The robot can switch its navigation modality between a “Free 

Navigation” mode and a “Safe Cooperation” navigation mode. The “Free Navigation” mode consists in the 

robot moving through a classical “Artificial Potential Fields” approach. The robot has to travel among 

known locations and this is done by using a visual SLAM strategy.  

Because of the omnidirectional base TIREBOT is mounted on, we model the robot as a kinematic point 

moving on the plane. The real size of the robot is considered when selecting the safety distances. Let 𝑥 ∈

ℝ2 be the Cartesian position of the robot. We consider the following model for TIREBOT:  

�̇� = 𝑢 

Let 𝑥𝑜 ∈ ℝ2 be a point representing the position of an obstacle. The speed of the robot and of the obstacle 

measured in an inertial frame, are respectively  �̇� and 𝑥�̇�. The robot is endowed with an on-board sensor 

(e.g. a laser scanner) capable of measuring the position of the obstacles, and, by derivation over time, their 

speed. Formally, the robot can measure (𝑥 − 𝑥𝑜) and (�̇� − 𝑥�̇�). The control input is given by:  

𝑢 = −∇𝑈𝑇𝑂𝑇 

Where 𝑈𝑇𝑂𝑇 is a virtual potential field which is defined with: 

𝑈𝑇𝑂𝑇 = 𝑈𝐴𝑇𝑇 + 𝜂(𝑡)𝑈𝑅𝐸𝑃 + [1 − 𝜂(𝑡)]𝑈𝐷𝐹 

The term 𝜂(𝑡) ∈ {0,1} is a discriminant which, if set to 1, nullifies the effect of the “Safe Cooperation” term 

[1 − 𝜂(𝑡)]𝑈𝐷𝐹 , while, on the other hand, if set to 0, it deletes the effect of the “Free Navigation” term 

𝜂(𝑡)𝑈𝑅𝐸𝑃. The switch between the two working modalities happen as: 

𝜂(𝑡) = {
1 𝑖𝑓 ‖𝑥 − 𝑥𝐻‖ ≥ 𝛿 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝛿is the distance threshold which delimits the boundary between the “Safe Cooperation” and “Free 

Navigation”. 

The other components of 𝑈𝑇𝑂𝑇 are given by: 

 𝑈𝐴𝑇𝑇 = 𝑘𝐴𝑇𝑇‖𝑥 − 𝑥𝐺‖: this is the attractive virtual potential field and 𝑘𝐴𝑇𝑇 ∈ ℝ+ is the attractive 

constant; 

 𝑈𝑅𝐸𝑃 =  
1

2
𝑘𝑅𝐸𝑃 (

1

‖𝑥−𝑥𝑜‖
−

1

𝑄∗)
2

  is the classical repulsive virtual potential field. 𝑘𝑅𝐸𝑃 is the repulsive 

constant and 𝑄∗ is the distance beyond which the gradient of the potential field is zero; 

 𝑈𝐷𝐹 = 𝑈𝑆𝐷𝐹 + 𝑈𝐾𝐷𝐹  : the Danger Field. It is composed by two components: 𝑈𝑆𝐷𝐹  is the Static 

Danger Field produced by static obstacles, while 𝑈𝐾𝐷𝐹 is the Kinetostatic Danger Field, which is 

generated by moving obstacles:  

 

𝑈𝑆𝐷𝐹 =  
𝑘𝑆𝐷𝐹

‖𝑥 − 𝑥𝑜‖

𝑈𝐾𝐷𝐹 =
𝑘𝐾𝐷𝐹‖�̇� − 𝑥�̇�‖(1 + 𝑐𝑜𝑠𝜑) 

‖𝑥 − 𝑥𝑜‖2

 

In these two equations 𝑘𝑆𝐷𝐹, 𝑘𝐾𝐷𝐹  are positive real parameters which can be set arbitrarily to tune the 

effect of the Danger Field. The term 𝑐𝑜𝑠𝜑 contains information about the direction the danger source is 

moving along and it is computed as: 
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𝑐𝑜𝑠𝜑 =  
(𝑥 − 𝑥𝑜,𝑖)(�̇� − �̇�𝑜,𝑖)

‖𝑥 − 𝑥𝑜,𝑖‖ ‖�̇� − �̇�𝑜,𝑖‖
 

The equation for 𝑈𝑆𝐷𝐹 is very similar to the one of the classical repulsive artificial field, but in this context is 

preferably to consider two different contributions to the overall potential field. 𝑈𝑅𝐸𝑃 is exploited for 

implementing the obstacle avoidance during “Free Navigation”, where the speed of the robot is high and, 

consequently, the distance to be kept from the obstacles is high. During the “Safe Cooperation” modality, 

the robot has to work close to the operator and to other objects (e.g. the car) and, therefore, the safety 

distance has to be kept small. Thus, the presence of  𝑈𝑆𝐷𝐹 and of  𝑈𝑅𝐸𝑃 in the definition of 𝑈𝑇𝑂𝑇 is due to 

the necessity for changing the safety distance while changing operational modality. 

The term 𝑈𝐾𝐷𝐹 generates a potential field proportional to the relative speed of the robot and of the 

obstacle. The term (1 + cos 𝜑) has a crucial importance: it is used for determining the direction the robot 

should move in to avoid the incoming moving obstacle. Furthermore, as stated in Sec. III-B, this term works 

also as a discriminant for activating or not the danger field. For example, if the relative speed of the robot 

and of the obstacle indicates that the obstacle is moving away or its trajectory is not intersecting the 

robot’s one, then the danger field is not activated. On the other hand, if the trajectory of the obstacle is 

leading it to collide the robot, then the direction of the generated command leads the robot on a safer 

trajectory. 

Teleoperation 

Consider a four wheels omnidirectional robot, capable of three possible inputs: shifting forward 𝑣𝑥, shifting 

laterally 𝑣𝑦 and rotating 𝜔𝑧. The total movement of the robot is a combination of these three inputs. 

Consider now the haptic device Geomagic Touch the teleoperation; the device has six degrees of freedom 

but only three of them are actuated and can return a force feedback. The device has also a switch inside 

the inkwell that holds the pen, used to sense if a user is holding the pen or if the device is at rest. The pen 

has two buttons: if the user does not press any button he will be able to move the robot along the 𝑥 and 𝑦 

axis. If the user presses the first button (B1) he will rotate the robot along its 𝑧 axis. If the user presses the 

second button (B2), then the wheel grabber will be actuated.  

The robot is teleoperated in rate mode, which means that the position registered on the haptic device is 

transformed into a speed which is then commanded to the robot, according to the following equation, 

where 𝑘𝑣 is a proportional constant: 

𝑣𝑥 = 𝑘𝑣 ∙ 𝑝𝑥 ⇔ (𝐵1 = 0)&(𝐵2 = 0) 

𝑣𝑦 = 𝑘𝑣 ∙ 𝑝𝑦 ⇔ (𝐵1 = 0)&(𝐵2 = 0) 

𝜔𝑥 = 𝑘𝑣 ∙ 𝑝𝑦 ⇔ (𝐵1 = 1)&(𝐵2 = 0) 

Here, 𝑝𝑥  and 𝑝𝑦 are the distances of the pen from a zero position that is in front of the device. The user 

takes control of the robot’s movements when the pen of the haptic device leaves its inkwell and the 

teleoperation commands has greater priority with respect the commands sent from the other ROS nodes 

(i.e. the autonomous navigation). For safety reason, the wheel grabber can be actuated only if the robot is 

not moving. If the user presses B2 and lifts upward the pen, then the robot will try to grab the wheel. 

Otherwise, if the user presses B2 and lowers the pen, then the robot will release the wheel (if it is carrying 

one). The user can check what is framed by the camera mounted on the robot thanks the screen of the 

control station. Furthermore, the graphical user’s interface is provided with a START and a STOP buttons 

that can be used in case of emergency. The STOP button prevent any movement of the robot. Once the 

user has stopped the robot, is possible to resume robot’s operation by pressing the START button.   
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The force feedback is computed thanks to the readings of the SICK S300 frontal laser scanner. This sensor 

returns the position of the detected objects in a vector of 𝑁 points. Each detected point is represented in 

polar coordinates(𝑑𝑖 , 𝛼𝑖). If the distance of a point is lower than a predefined range 𝑄∗, then the point 

generates a virtual repulsive field which contributes to generate the overall force which is communicated to 

the userthrough the haptic device. Generally, the i-th point generates the potential field: 

𝑈𝑟𝑒𝑝 =  {

1

2
𝑘𝑟 (

1

𝑑𝑖
−

1

𝑄∗
)

2

𝑖𝑓 𝑑𝑖 ≤ 𝑄∗

0  𝑖𝑓  𝑑𝑖 > 𝑄∗

 

In the previous equation 𝑘𝑟 is a proportional constant which is used to calibrate the intensity of the 

repulsive field. The overall potential field is given by the sum of the contribution of each detected point. 

The force the user will sense at the haptic device can be easily obtained by computing the gradient of the 

repulsive field 𝐹 =  −∇𝑈𝑟𝑒𝑝. 

High level capabilities tests 

These high-level capabilities were first tested on a Pioneer P3DX robot equipped with a sensor equipment 

similar to the one of TIREBOT. The choice of testing Task 3 capabilities on a different robot than TIREBOT, is 

due to the fact that Task 2, which expect the physical realization of the robot, and Task 3 activities were 

developed in parallel: this means that the development of high-level capabilities could not have place on 

the TIREBOT prototype, that was under construction. 

Experiments can be seen on the attached video (ECHORD++_exp2.mp4).  

The video shows first the robot following the user (which sends commands to the robot through gestures) 

and navigating autonomously in the environment while also avoiding obstacles. Then the second part of 

the video shows safe cooperation: if the user moves slowly, he can move close to the robot. On the other 

hand, if the user gets too close to the robot or moves too fast, the robot detects the fast approaching 

object as a danger and moves away. The last part of the video shows the teleoperation of the robot 

through the haptics interface.  
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IV. Integration 
The choice of using ROS for developing the TIREBOT application facilitated a lot the integration of all the 

pieces of developed software. In fact, the ROS architecture makes easy the reuse of code and the 

communication between processes (which in ROS are called “nodes”). Any node can publish an arbitrary 

number of messages, called “topics”, of different types diversified by the topic name, and, similarly 

subscribe to topics produced by other nodes. In order for a node to subscribe a topic, this one must be of 

the same type and have the same name. Thus, it is very simple to substitute nodes and the debug of the 

software is easy.  

Here’s a brief list of the main nodes running on TIREBOT: 

 neo_relay_board: this node represents the drivers for the Neobotix MPO-500 mobile robot. 

 sick_s300_laser_scanner: this node represents the driver for the SICK S300 laser scanner. 

 map_server: the map server that handles the map explored by the robot. 

 move_base: this node handles the autonomous navigation of the robot. It subscribes to 

information regarding the map published by the map server and to laser readings. It generates a 

path the robot should follow and generates the speed commands that the robot has to actuate to 

follow the desired trajectory.  

 video_view: this node, which is running on the control station, shows the video captured by the 

camera the robot is endued with. 

 skeleton_tracker: this node is the driver for the ASUS Xtion Pro Live and publishes information 

about the skeleton of the framed users. In particular, this node can recognize the limbs of a human 

user and publishes their positions as frames.  

 marker_identifier: this node recognizes the visual markers placed in important places in order to 

help the robot in its navigation. Once a marker is framed by the camera and recognized, this node 

sends a new goal to be tracked to move_base.  

 tim_drivers: this node implements the drivers for the localization laser scanner SICK TIM310.  

 localizer: this node implements a localization algorithm that computes the position of the robot 

according to laser scanner’s measurements of reflective markers.  

 kalman_filter: this node merges odometric information given by the robot with the position 

computed by the localizer node. This was done in order to smooth the position information given 

by the localizer and to make possible navigation if reflective markers readings are temporary not 

available.  

 geomagic_driver: this node implements the drivers for the haptics device. It provides data on the 

position of the haptics device’s end effector, its buttons, the speed of its joints and the their 

angular position. It is also responsible of the actuation of the haptics device’s motors that 

implement the force feedback.  

 haptic_teleoperation: this node translates the haptics device commands into speed commands. 

Furthermore, if the user presses the haptics device’ pen buttons, the node sends commands to 

actuate the wheel gripper. 

 force_feedback: this node, by subscribing to laser measurements, generates the force feedback 

commands.  

 gripper: this node implements the drivers of the wheel gripper of TIREBOT. 

 danger_field: this node implements the Danger Field algorithm that makes possible the 

human/robot safe cooperation.  

 arbiter: this important node is responsible for the arbitration on which node is actually sending 

speed commands to the robot. A brief description of how this node works is reported in the 

following of this section.  
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 sound_play: this node makes the robot capable of speaking. This was done in order to give a 

feedback of the action the robot is doing to the user.  

 <<generic_tf_responsible_nodes>>: these nodes are responsible of publishing data on how the 

frames of the robot are placed with respect a fixed frame represented by the map.  

The nodes network (commonly called Node Graph) is shown in Figure 6.  

 

Figure 6: The ROS's node graph 

Integration was done while paying great attention to safety. A ROS arbiter node checks the identity of the 

speed publisher node. Every command has a priority according to the identity of the publisher. For 

example, the speed published by the teleoperation node has a much higher priority than the speed 

published by the autonomous navigation. This happens because the teleoperation is actuated directly by 

the user that must intervene in case of danger.  

This arbiter node filters also speed commands sent by the ROS nodes for navigation, teleoperation, etc. The 

arbiter decides which speed command will be forwarded to the robot according to priority: for example, 

the Danger Field node, that gets activated by the distance of the robot from the goal, has higher priority 

with respect to the autonomous navigation node; consider, for instance, the robot following a person. If 

the user suddenly stops and draws back fast, the robot must stop and draw back too in order to free the 

way to the user.  

Of course, the highest priority is given to the teleoperation node: if the user sees a dangerous situation for 

people or for the robot, s/he must intervene through teleoperation to prevent damages. The arbiter will 

then ensure that the speed command generated through teleoperation has higher priority than any other 

speed command received, and then will move the robot according to the user’s commands.  
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The grabbing of the wheel procedure and the actuation of the forks have a dedicated arbiter that must 

acknowledge the command before allowing the movement. For example, if a node asks the “wheel 

grabber” node to grab a wheel, it first lifts the lower forks of few centimetres, letting the load cells to 

“sense” the presence of the wheel. The upper fork will be actuated only if the wheel is actually loaded on 

the lower forks. Furthermore, the wheel gripper can be moved only if the robot is stopped.  

V. Experiments 
The integration experiment took place in a workshop-like environment, in order to make as similar to a real 

application as possible. In particular, the experiment took place in the CORGHI’s Car tyres mechanic School 

(see Figure 7).  

 

Figure 7: TIREBOT during the Integration Experiment 

A video showing all the capabilities of the robot is attached to this document. Table 2 reports a list of all the 

tasks is proposed with a brief description of the capabilities and where, in the video, each capability is 

shown. 
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T2.1 - Construction 

A2.1.1 - Lifting platform and 
installation 

Mechanical design and realization 
of the lifting device.  

The robot can be seen in every part 
of the video. In particular, the 
lifting platform in action from 1:09 
to 1:44. 

A2.1.2 - Camera installation and 
calibration 

Installation and calibration of a 
camera on TIREBOT.  

This capability can be seen in every 
part of the video 

A2.1.3 - Control unit installation 
Installation of a computer for 
controlling the robot. 

The control unit can be seen in 
every part of the video 

T2.2 - Interaction 

A2.2.1 – Visual recognition 
Develop an algorithm for 
recognizing wheels, tire changer, 
wheels balancer and operators.  

From 0:19 to 1:47 

A2.2.2 – Geometric map 
Build a geometric map by using the 
output of the laser scanner. 

From 0:48 to 1:08 

A2.2.3 – User interface 

Design a simple user interface that 
allows to user to specify simple 
commands. The user can interact 
with the robot with gestures. 

From 0:19 to 1:44 

T2.3 -  
Control station 

A2.3.1 – Setup the control station 
Design a control station equipped 
with a haptic device for 
implementing teleoperation.  

From 0:06 to 0:18 

A2.3.2 – Visual stream from 
TIREBOT 

Make the robot capable of 
streaming  

From 0:06 to 0:18 and from 0:48 to 
1:08 

A2.3.3 – User interface 
Design a user interface on the 
control station.  

From 0:48 to 0:18 
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T3.1 – Navigation 

A3.1.1 – Safe operator following 

Use laser scanner and camera for 
recognizing the operator and for 
following him while keeping a safe 
distance. 

From 0:19 to 0:47 

A3.1.2 – Planner with obstacle 
avoidance 

Build a planner and a trajectory 
tracking control for taking the robot 
from its current position to a 
desired position. Use laser scanner 
for detecting obstacle and avoid 
them while keeping a safety 
distance. 

From 0:19 to 1:08 

A3.1.3 – Visual servoing 

Design a visual servoing algorithm 
for precision positioning of the 
robot according markers in the 
environment. 

From 0:19 to 0:47 and from 0:48 to 
1:08 

T3.2 – Cooperation 
A3.2.1 – Safe working condition 
recognition 

By using laser scanner, build a local 
map of the environment 
surrounding the robot.  

From 1:45 to 2:34 

A3.2.2 – Hierarchical safe strategy Build a two control architecture  From 1:45 to 2:34 

T3.3 - Teleoperation 

A3.3.1 – Tele/autonomous 
arbitration 

Develop an arbitration for enabling 
teleoperation and disabling the 
autonomous control and vice versa. 
When the user moves the 
phantom, the autonomous 
behaviour is disabled. When the 
phantom is set into its rest position, 
the teleoperation is disabled and 
the autonomous behaviour is 
switched on. 

From 0:06 to 0:18 

A3.3.2 - Teleoperation 

Implement a bilateral teleoperation 
architecture. Implementation was 
done in “rate mode” and force 
feedback is associated to the 
distance between the robot and 
the surrounding obstacles. 

From 0:06 to 0:18 

Table 2: Task and capabilities list 

The integration experiment video will be also uploaded on YouTube. The video starts with the experiment 

on teleoperation (see Sec. III). Then the video shows the robot recognizing the user, who lifts his arms 

above his head in order to be recognized, and receiving the order to follow him. The video then shows the 

user’s interface (on the left) and the geometric map building (on the right). Furthermore, the video shows 

also the path (the red line) built by the planner and how the map evolves, while the robot explores its 

surrounding.  

In the next scene the robot receives from the user the command to grab a wheel. The robot rotates of 180° 

and waits for the operator to put the wheel on its forks. Then the robot moves the lower forks, first, to lift 

the wheel and then grabs it firmly with the upper fork.  

The last part of the video shows the safe human/robot cooperation. If the user approaches slowly the 

robot, it stands still in its position. On the other hand, when the user approaches fast the robot or moves 

too much near to it, the robot senses the operator ad a danger and moves away.   

  



ECHORD++ - The TIREBOT co-worker 
 

 

17 
 

VI. Conclusions 
This document reported the integration work of Task 2 and Task 3 activities. In particular, this document 

described Task 3 activities, which first were tested on a mobile robot different then TIREBOT, and how they 

were integrated with those developed during Task 2 (see Deliverable 2 – Mechatronics of TIREBOT). A video 

that shows these high-level capabilities is also provided with this document.  

This document also reported a description of how the user can interact with the robot: through gestures or 

by teleoperation. A subsection of the manuscript is dedicated to the description of how safe human/robot 

cooperation is achieved.   

The implementation of safety procedures is described, with a particular attention to the description of the 

arbitration of which running node is actually commanding the robot.  

The integration work was then tested experimentally that shows the robot working in different modalities 

in a workshop-like environment while assisting a tire repairer worker.  

 


