

LINarm++
Affordable and Advanced LINear device

for ARM rehabilitation

Deliverable D2.1
Control system architecture and components

Contractual delivery date 31.10.2015 (month 6)

Actual delivery date 31.10.2015 (month 6)

Version 1.0

Dissemination level CO

Authors Matteo Malosio (CNR)
Alessio Prini (CNR)
Matjaz Mihelj (UL)
Janez Podobnik (UL)
Andrea Crema (EPFL)

Table of contents
Executive summary 3

1. System architecture 4

2. Devices 6

LINarm 6

Physiological sensors 6

NMES electrodes 7

Monitor 7

LINarm controller 7

Physiological sensor acquisition board 10

Rehastim 10

VR Renderer 11

LINarm++ 11

Patient model 14

3. Connections 17

LINarm++ manager <-> LINarm controller 17

LINarm++ manager <-> Physiological sensor acquisition board 17

LINarm++ manager <-> Rehastim 18

LINarm++ manager <-> Patient model 18

Patient’s model <-> VR Renderer 18

1

Executive summary
This document is intended to present the LINarm++ architecture and control system. It is designed to
face and manage all the foreseen tasks of the LINarm++ platform as:

● control of the LINarm mechatronic device called Linarm robot in the sequel
● collect, manage and display all the system data
● define and represent rehabilitation tasks and targets to care givers and patients
● control functional electrical stimulation (FES) enabling the system to support hybrid

rehabilitation therapies
● infer in run-time the level of assistance needed by the patient for a certain task in his particular

and actual physiological condition
● render a virtual feedback to the patient consistent to activity performed and to the task given
● synchronize activities performed by the devices of the system

The system architecture presented here is intended to present devices, connections, communication
protocols and how all the components interact to realize the foreseen functionalities activities. The term
device stands for all the hardware and software (H&S) components needed to realize a defined set of
activities. The term connection stands for all the H&S components (wires, protocols and so on) needed to
realize the communication between two devices.
The system architecture and its functioning are presented in Chapter 1.
All the devices of the architecture are described in detail in Chapter 2.
Connections between each device are described in detail in Chapter 3.

2

1. System architecture
The underlying figure represents the LINarm++ system architecture

UML representation of the LINarm++ architecture.

The architecture is interfaced to the medical personnel through the LINarm++ device. It is a Python
program running on a PC made up of two main layers. Being Python-based it is intrinsically
multi-platform.

The upper layer, the LINarm++ GUI, is a GUI (Graphic User Interface) which allows the user to
control all the system functionalities and graphically represents all the system data .
The lower layer, the LINarm++ Manager, has the aim of managing the LINarm++ system coordinating
all the system’s devices according the selected control modalities and selected functionalities.
It receives streams of different data, as kinematic data, physiological data, level of assistance data,
dispatches them to other devices coherently with their use and applies control logics and functioning
modalities..

The LINarm controller is an Arduino DUE board running a C++ program. This board is a low-cost
general purpose featuring a cortex M3 microcontroller. The C++ software running on this board
controls in real-time the LINarm device according to a set of commands exchanged with the
LINarm++ manager.
The LINarm node is a variable-stiffness-actuated robotic device performing linear movements. It is
widely illustrated in D3.1 deliverable.

3

A set of physiological data are measured by a set of physiological sensors and sent to the LINarm++
manager by a signal acquisition board. Measured quantities are heart rate, skin conductance and skin
temperature. An additional measure refers to the grasping force. These data are acquired by a signal
acquisition board which sends collected data through a USB protocol connection.

All data are collected by the LINarm++ Manager and made available to the patient model device. It is a
Matlab program aiming at estimating in run-time the patient state and the recommended assistance
level. As Python scripts also Matlab scripts are portable allowing realize a platform-independent
software architecture. All data exchanged between the LINarm++ manager and the Patient model are sent
through an UDP connection.

The assistance level evaluated by the Patient model is exploited by the LINarm++ Manager to determine
both the robotic assistance and the FES assistance to be given to the patient. The robotic assistance is
given by the LINarm device. The RehaStim node is responsible of giving FES assistance and consists of
an electrostimulator in charge of generating stimulation currents according to commands sent over a
USB connection by the LINarm++ Manager.

The VR Renderer node and the Monitor are helpful generate the graphical representation of the task to be
carried out by the patients in the form of a game, involving the patient in performing a defined task.

All the devices are integrated to a render a multisensorial experience while performing and
administering rehabilitation tasks and protocols. More detailed devices descriptions are given hereafter.

4

2. Devices
In this section all the devices and their functionalities of the LINarm++ architecture are described in
detail. For each device, the corresponding node is highlighted in the system architecture diagram.

LINarm
LINarm is the mechatronic device of the LINarm++ experiment. During the experiment a redesigned
version is being developed, namely LINarm2, and its details are illustrated in D3.1 - Mechatronic device
design.
It is grounded through an orientable spherical joint and features an instrumented handle held by the
patient. The device is equipped with two actuators, position sensors and switches to control its
functioning and movements. All these electromechanical equipments are connected to an Arduino
board in charge of its real-time control. Additionally, it will be equipped with a communication channel
acquiring data from a set of sensors installed on the handle. These signals are transmitted through a
proper cable chain installed in parallel to the linear axis..

LINarm2 mechatronic device installed on a desk.

Physiological sensors
A set of physiological sensors are installed in the system to estimate the state of the patient and,
subsequently tune the level of assistance. Physiological sensors included in the device are:

● Heart rate sensors
● Skin conductance sensors
● Skin temperature sensors
● Grasp force sensors

For more detailed description please refer to Deliverable D4.1.

5

NMES electrodes
The electrode arrays used for targeting the chosen muscular districts are obtained by embedding four
standard electrodes into a fabric support, and by providing a convenient cabling system, able to provide
low encumbrance, and ease of wearability. Since the electrodes are arranged as a small matrix,
suboptimal alignment can be improved by software choice of the best combination electrodes. For a
more detailed description please refer to D 5.1.

Scheme of a matrix of electrodes.

Monitor
LCD monitor with standard resolution for displaying graphical representation of the task virtual
environment.

LINarm controller

The LINarm conroller is an Arduino board Due running a composed a real-time C++ software. Arduino
Due is a general purpose board based on Atmel SAM3X8E ARM Cortex-M3 CPU, with a series of
analog and digital I/O port, exploited to control the LINarm actuators and
sensors.(https://www.arduino.cc/en/Main/ArduinoBoardDue)The software architecture of this device
is composed by a series of object that give a software abstraction of the LINarm physical element like
motor, encoder, VSA spring ecc. The figure hereafter represents a scheme of the software architecture.

6

https://www.arduino.cc/en/Main/ArduinoBoardDue

UML software architecture representation.

7

As depicted, the main object is Linarm. It includes a finite state machine necessary to control the
LINarm robot in all the working phases. The finite state machine is depicted in the follow figure.

Finite State Machine of the LINarm device.

The Finite State Machine is characterized by three main states.
The IDLE state is the initial state of the device. In this state it’s possible to select the movement
control mode(BY_POS or BY_VEL) of LINarm. In this state motors are off.
In the HOME state LINarm perform an homing procedure, automatically manage by LINarm
controller. During this phase, encoders are reset exploiting end-strokes switches and a predetermined
home position is reached at the end of the home procedure. In order to carry out the home procedure
motors are switched on. In this phase MOVE_DELTA_TO, MOVE_CENTRE_TO or
SET_DELTA_VEL and SET_CENTRE_VEL motion commands are used to control the LINarm
movement. The names DELTA and CENTRE refer to the VSA spring. DELTA refers to the distance
between two end point of the spring, CENTRE refers to the equilibrium point of the VSA. These
functions are transformed in commands for the LINarm motors.

The real-time motion control is executed according to the control loop hereafter represented.

8

Real-time motion control scheme.

The main control consists of a position control loop. If the JOG motion control modality is selected
(REF_BY_VEL mode selected) the reference velocity is integrated by time to obtain a position target
to be used in the position control loop.
Sensors data, states and modes of the device are sent to LINarm++ Manager.

Physiological sensor acquisition board
Analog values from four sensors (force, heart rate pulse, skin conductance and temperature) are
sampled by the STM32F4 12-bit ADCs at 100 Hz. Value for each sensor is represented by 2 bytes that
are sent over serial communication to PC where signal processing is performed. Signal processing will
be run on same computer as patient model.

Rehastim
The Rehastim One (Hasomed GmbH, Magdeburg, DE) is a programmable eight channels electrical

stimulator for clinical and research purposes. The ScienceMode, provided by Hasomed as a firmware
extension of the standard device, is a protocol for the interface between the RehaStim and an external

PC, which allows external control of the RehaStim in order to generate stimulation pulses.

Hasomed RehaStim electrostimulator.

9

The stimulator is controlled using the Continuous Channel List Mode, and the creation of complex
patterns is greatly simplified. Additional hardware is included in the overall system to allow a simple
interfacing of the stimulator with the wearables, and to minimize the overall numbe of needed cables.
more detailed information is included in the deliveravle D5.1.

VR Renderer
Graphical representation of the task virtual environment will be designed in Unity3D. Unity3D is
cross-platform game engine used for developing 3D or 2D video games and graphical virtual
environments. Graphical virtual environment can be compiled into stand-alone executable for
Windows and Linux operating system.

LINarm++
.
As previously introduced, the LINarm++ device consist of two layers; LINarm++ GUI layer, interface
to the medical personnel, and LINarm++ Manager layer, in charge of collecting data and controlling the
functionalities of the overall architecture.
A preliminar screenshot of the GUI is reported hereafter.

10

LINarm++ Graphical User Interface.

It is written in Python language and exploits the PyQt4 library to realize graphical widgets and forms.
The graphical interface is divided in four main frames fulfilling distinct functionalities.
Frame 1 groups numerical values of instantaneous system data. In its lower side control states and
eventually arose errors are reported.
Frame 2 includes a set of 2D graphs. Available data can be selected and shown in run-time through the
PyQtGraph library. In the lower side a Save button allows to save data.
Frame 3 includes a 3D simplified representation of the mechatronic system. This section is only a
representation useful to medical personnel and is useful to test control algorithms and software
functionalities during the development phase, simulating the device functioning, and to represent
targets of the exercises.; the VR-renderer device is synchronized to represent exercises in a more pleasant
way for the patient.
Finally, frame 4 includes commands and functionalities to control the LINarm++ system. On the
upper side there are the main commands to control the LINarm++ system’s devices. On the lower side
there are buttons to select states and modes. A peculiarity of this section is represented by the script
mode. In this mode it is possible to edit and execute a task consisting of a set of commands sent to
LINarm++ devices. In this mode it’s possible to select and customize the task to be executed .

Selections done on the GUI layer are trasformed in actual commands by the LINarm Manager. Even this
layer is written in Python language. This peculiarity made the system portable also on platform different
from Linux OS. LINarm++ Manager includes all the functionalities required to communicate with system
devices. It can receive/send data from/to each device through proper communication protocols (refer
to Chapter 3)..
By the LINarm++ Manager it’s even possible define a list of parameter useful to split the assistance
between the FES device and LINarm robot device. The following scheme help to understand how
LINarm++ Manager does this.

11

LINarm++ Manager receives the assistance level a calculated by the patient model (described in next
section) according to physiological and kinematic data. This level is processed to get two quantities (ar
assistance robot, i.e. LINarm, level and af assistance FES level) by kr anf kf parameters. According to
specific patient’s needs, the medical personnel define (robot assistance gain) and 0 ≤ kr ≤ 1 0 ≤ kf ≤ 1
(robot assistance gain) patient by patient through the LINarm GUI.
Robot assistance is managed by coefficients km, ka, kt.
km refers to mechanical stiffness of LINarm VSA. ka refers to LINarm admittance control . kt refers to
an additional active impedance of LINarm that take in account the difference between the handle
position and target position for the task given to the patient.
km, ka, kt are defined by the medical personnel through the GUI layer.

12

Patient model
Decision tree is an algorithm which uses tree-like model of consecutive decisions to determine the
outcome. It is constructed of internal nodes and branches which branch from upper level nodes to
lower level nodes. Each node contains a branching condition for one of the features and intermediate
outcome. Last node is called leaf, which contains final outcome. Decision tree can be pruned by
removing leafs (lowest level of nodes) and next lowest level of nodes become leafs and their
corresponding intermediate outcomes become final outcomes.
Decision trees have advantage over similar decision algorithms over others algorithms because they
represent transparent and understandable hierarchy of decision rules, and are therefore simple to
understand, interpret and adapt. The other big advantage is that decision trees can be constructed using
minimum learning set of data by a human expert who determines the structure and decision rules,
which can be later adjusted when new data is available.

Decision tree for determining the level of robot support.

Patient model will be constructed as a decision tree with five layers (see previous Figure). The inputs to
the decision tree are the following parameters:

● patient’s clinical assessment scores,
● patient’s task performance (scores, ability to complete single subtask, time to complete single

subtask),
● patient’s motor performance (force, velocity, power, smoothness, …), and
● patient’s physiological assessment (heart rate, skin conductance, peripheral skin temperature).

13

The output of the decision tree is the value that defines the robot support. At the input to the top α

layer the robot support can have any value from full assistance () to full resistance (), α α = 1 α = − 1

thus . Each layer limits values to a subset of . In the final layer the parameter− 1 ≤ α ≤ 1 α − 1 ≤ α ≤ 1

 gets a single scalar value that is sent to the robot controller.α

The top layer has only one node with three branches. This node gives the highest priority to decisions
of physicians and therapists that score patient’s abilities with clinical scores. Based on his/her clinical
scores the patient is assigned to one of the three groups: 1) the patient requires robot assistance, 2) the
patient can work against robot resistance and 3) the patient is somewhere between robot assistance and
resistance. At the top layer branching depends on the selected clinical score used for patient evaluation.
The second layer has three nodes with two branches each. The decisions on this layer are based on the
Task Performance Index (TPI). The TPI is a variable normalized between 0 (poor performance) and 1
(excellent performance) and is computed from the results of the obtained in the training task. The exact
model to compute the TPI will be determined later. Branching thresholds will be determined based on
the empirical data obtained during training sessions with patients. The setting of thresholds can also be
left to therapists.
The third layer has six nodes (each node in the second layer has two branches) with two branches each.
The decisions on this layer are based on the Motor Performance Index (MPI). The MPI is a variable
normalized between 0 (poor performance) and 1 (excellent performance) and is computed from the
measurements of parameters related to physical human-robot interaction. The exact model to compute
the MPI will be determined later. Branching thresholds will be determined based on the empirical data
obtained during training sessions with patients. The setting of thresholds can also be left to therapists.
The fourth layer has twelve nodes (each node in the third layer has two branches) with two branches
each. The decisions on this layer are based on the Physiological Trend Index (PTI). The PTI is a
variable normalized between 0 (no trend or negative trend of physiological signals) and 1 (positive
change of physiological signals) and is computed from the physiological measurements. The exact
model to compute the PTI will be determined later. Branching thresholds will be determined based on
the empirical data obtained during training sessions with patients. The setting of thresholds can also be
left to therapists. Since physiological measurements are the least reliable compared to other
measurements the influence of PTI on the robot support is the smallest.
The fifth layer transforms the range of possible robot supports determined in the previous four layers
into a single value to be sent to the robot. The single value is computed based on the performance
related to a single subtask (e.g. movement to catch an object). If the patient is able to complete the
subtask with the minimal determined level of support, he/she is allowed to do so. Otherwise, the
support gradually increases toward the maximal determined level of support. In this case the minimal
and the maximal level of support are only a subset of , which was determined in the first − 1 ≤ α ≤ 1

four layers.

14

3. Connections
In this section the implementation details of the communication protocols are reported.

LINarm++ manager <-> LINarm controller

All communications are managed by the linarmApp object previously presented in LINarm controller

section. The communications with the LINarm++ Manager are realized by the CmdMessenger library

(http://playground.arduino.cc/Code/CmdMessenger), originally implemented to realize callback-based

communications between Arduino and C# software. CNR ported the C# implementation to the

Python language. Messages are formatted as follows:

Cmd Id, param 1, param 2, … , param N;

CmdMessenger supports callback function that realize one relationship between ID and related function.

There are two main data types: incoming data and sent data. Incoming data are sent by Linarm++ Manager to

LINarm controller and sent data are sent from LINarm controller to the LINarm++ Manager. Due to the

multithread structure, data consistency is guaranteed by properly implemented mutexes and lockers.

LINarm++ manager <-> Physiological sensor acquisition
board
Communication protocol between LINarm++ manager and Physiological sensor acquisition board will
be standard serial UART communication protocol. Each package will contain 20 bytes and will be send
with frequency of 100 Hz, requiring a 16kbit communication bandwidth.

Header Heart rate Skin
conductance

Skin
temperature

Force sensor Additional
data

2 bytes 4 bytes 2 bytes 2 bytes 2 bytes 8 bytes

15

http://playground.arduino.cc/Code/CmdMessenger

LINarm++ manager <-> Rehastim
The communication between the LINarm++ Manager and the RehaStim module in charge of
controlling the FES electrodes is done, as previously introduced, exploiting the Continuous Channels
List mode through a USB connection. This control mode delegates to the RehaStim the hard real-time
control of stimulation patterns, leaving the LINarm++ Manager the possibility to change its parameters
asynchronously and without real-time requirements.
To this purpose, a communication driver (RehaStim1.py) has been implemented in Python and
allows to control stimulation parameters by a generic Python program. It will allow to develop stand
alone programs and will be embedded in the LINarm++ manager to synchronously control both the
LINarm robot and the FES system by a single node. The driver has been implemented according to the
RehaStim ScienceMode specifications. In order to generate customized profiled stimulation patterns a
proper higher-level class has been developed to interpolate a set of values as function of desired
parameters, e.g. time or trajectory normalized coordinate.

LINarm++ manager <-> Patient model
Communication protocol between LINarm++ manager and Patient model will be UDP
communication protocol. Each package will contain 40 bytes and will be sent with frequency of 100
Hz, requiring a 32kbit communication bandwidth.

Header Heart
rate

Skin
cond.

Skin temp Force
sensor

Interaction
force

Robot
vel.

Robot
position

Target
position

Task
data

Additional
data

2 bytes 4 bytes 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes 2 bytes 4 bytes 8 bytes 8 bytes

Patient’s model <-> VR Renderer
Communication protocol between LINarm++ manager and VR Renderer will be UDP communication
protocol. Each package will contain 32 bytes and will be sent with frequency of 50 Hz, requiring a
12.8kbit communication bandwidth.

Header Force
sensor

Interaction
force

Robot
velocity

Robot
position

Target
position

Task
data

Additional
data

2 bytes 2 bytes 2 bytes 4 bytes 2 bytes 4 bytes 8
bytes

8 bytes

16

