

The European Coordination Hub for Open Robotics Development

ECHORD++ Review Meeting

Jesus Pablo Gonzalez EURECAT *Aerial Robot for Sewer Inspection*

14/02/2017 Luxembourg

INDEX

Aerial Robot for Sewer Inspection

1. Echord++ PDTI in Urban Robotics

2. ARSI Robot

3. Achievements, Impact and Next steps

PDTI Urban Robotics: Sewer inspection

Public end-user Driven Technological Innovation

Sewer inspections require many humans to work in risky and unhealthy conditions.

The current need of **the City of Barcelona** is:

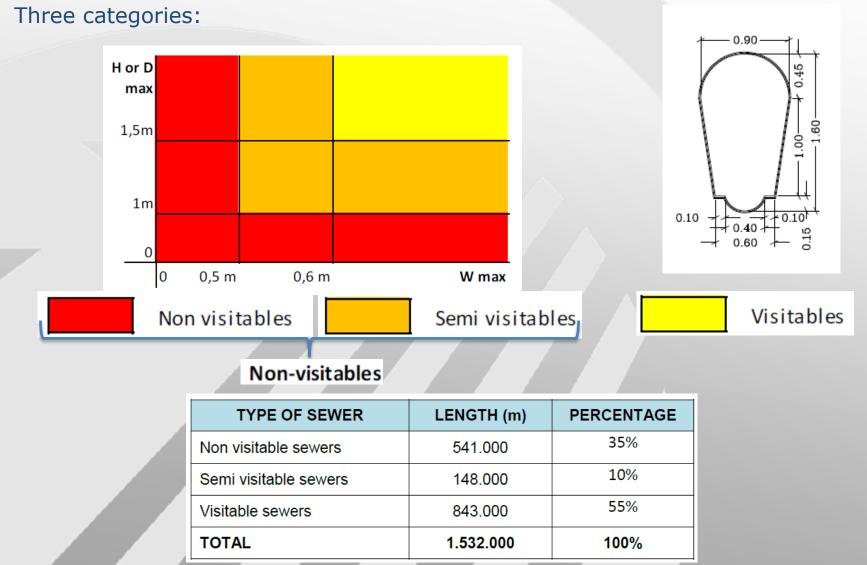
- reducing the labour risks,
- improving the precision of sewer inspections
- and optimizing sewer cleaning expenses

Introducing a **robotics solution** in this process aims at addressing all them.

Sewer inspection: Current procedures

The sewer network of Barcelona is 1532 km long

Approximately 50% is accessible to workers


Workers walk all along the pipe and perform visual inspections and decide interventions

Special health and safety measures are required + other risks like slippery sections, obstacles or biological risks from the potential contact with wastewater

Currently: about 1.5 km of sewer every 6 hours

Sewer accessibility

Sewer accessibility

TYPE OF SEWER	LENGTH (m)	PERCENTAGE
Non visitable sewers	541.000	35%
Semi visitable sewers	148.000	10%
Visitable sewers	843.000	55%
TOTAL	1.532.000	100%

State of the art in Inspection Vehicles

There exists some inspection vehicles, usually tethered and teleoperated, equipped with several type of sensors, capable to illuminate and perceive the environment and generate models of the sewer.

Courtesy: IBAK

Echord ++ seeks advances in: **Robot autonomy Real-Time Decision Making**

Mobility Possibility to Focus on Defects

Functional Requirements

FUNCTIONS		WEIGHT		
Sewer serviceability inspection	Sewer performance (at least 1000 lineal meter/labour day)		10%	80%
	Images (Video)		40%	
	Geometric analysis (scanning)		20%	
	Monitoring	Air	9%	
	Monitoring	Water	1%	
Structural defect inspection		'	15%	
Sampling			5%	

Operational Requirements

perception

robustness

Integration in the environment

dependability

adaptability

intuitiveness

scalability

endurance

decisional autonomy

communication

cognitive ability

configurability

flexibility

14/02/2017 // Jesus Pablo Gonzalez (EURECAT)

motion capability

ARSI Robot

14/02/2017 // Jesus Pablo Gonzalez (EURECAT)

10

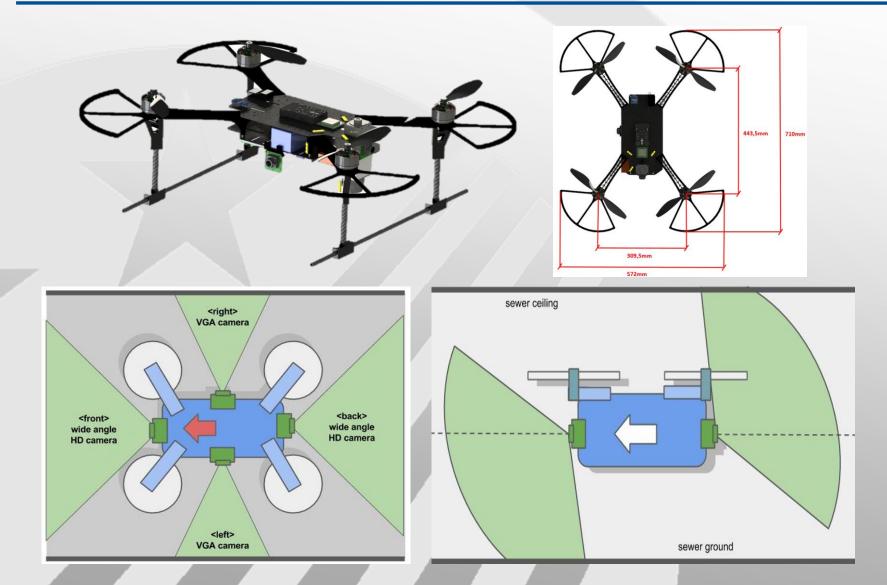
ARSI Consortium

The ARSI Consortium is composed by:

The consortium covers the entire value chain including:

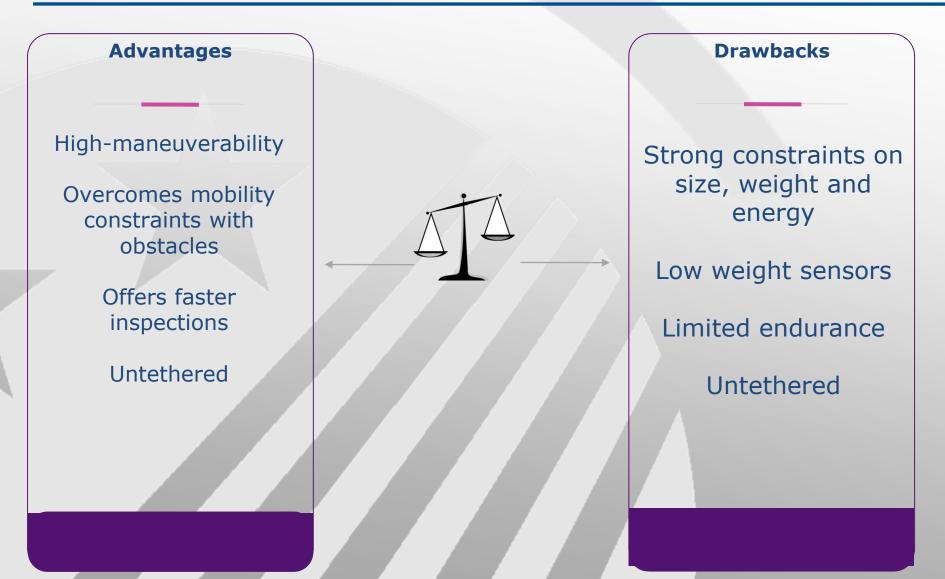
- FCC is a world reference company in environmental urban services company,
- a worldwide leader in sewer inspection robots manufacturing
- a research center with experience in both aerial robots for harsh environment and perception
- a company specialized in aerial robots operation, manufacturing, simulation and training.

The ARSI concept



ARSI is

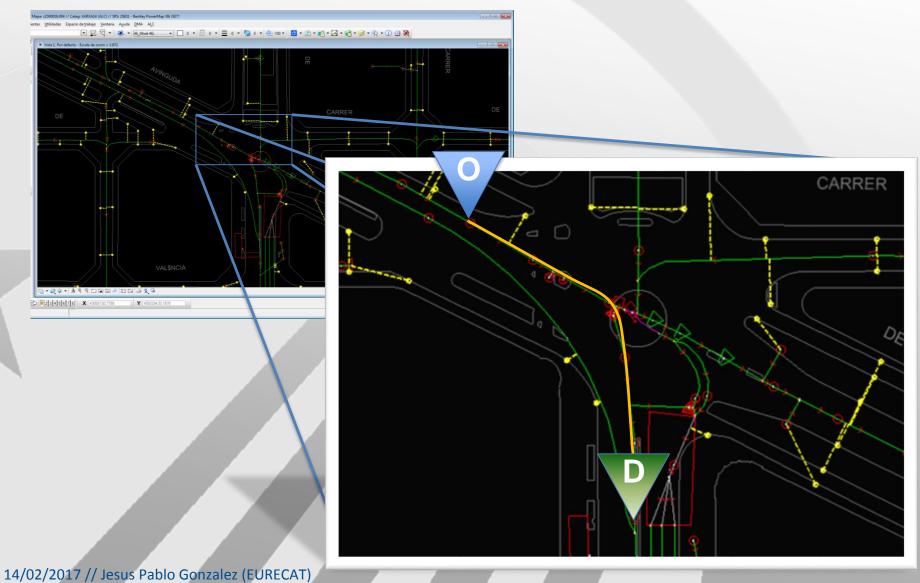
- a micro aerial vehicle (MAV), multi-rotor type,
- endowed with sensors for
 - its safe autonomous navigation along the network and
 - data collection for its inspection.
- to be fully integrated into FCC standard inspection procedures



The ARSI concept

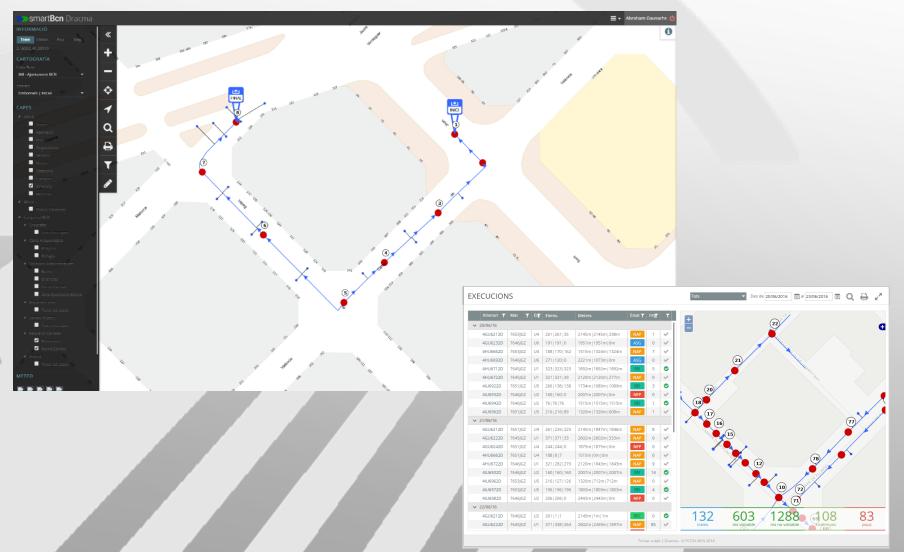
Pros and Cons

ARSI Objectives


The ARSI Consortium is targeting the following objectives:

- Objective 1: Adaptation of a MAV for sewer inspection
- Objective 2: Development of an assured navigation system for confined underground environments
- Objective 3: Development of the monitoring and inspection capabilities with low-medium quality sensors

 Objective 4: Integration/adaptation into a GIS and management software and with present technology

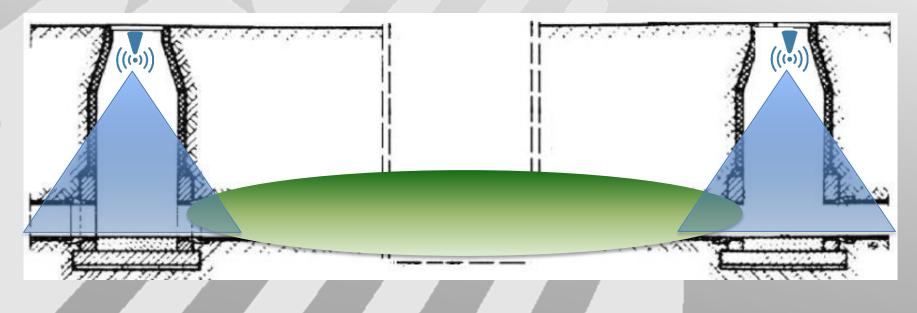

ARSI Operational Concept

16

ARSI Operational Concept

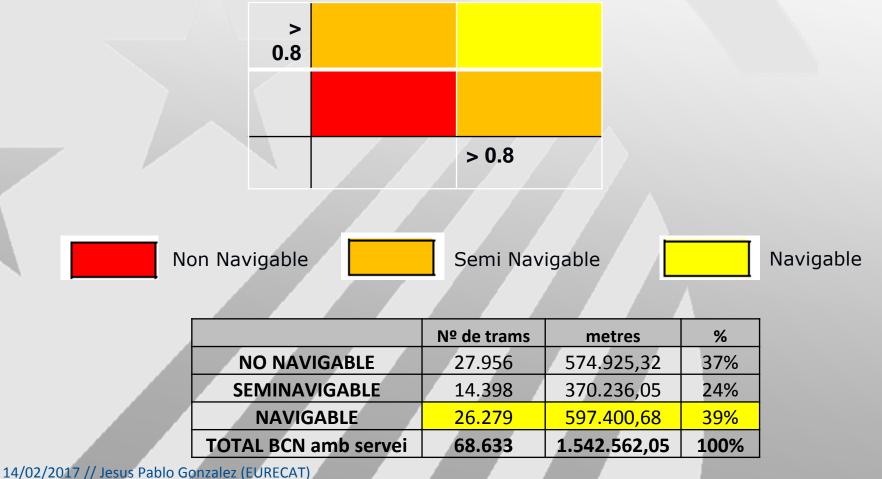
ARSI Operational Concept

- 1. Deployment of the system
- 2. Start autonomous flight
 - 1. Detect bifurcations
 - 2. Avoid obstacles


- 3. Arrive to recovery point
- 4. Recovery of the system

Communications vs Adaptable Autonomy

The ARSI MAV will implement adaptable autonomy:


- the level of automation will adapt to the scenario
- in areas with communications the operator will be allowed to teleoperate
- as soon as the link is lost, the platform will continue the flight plan in autonomous flight mode

New definition: sewer navigability

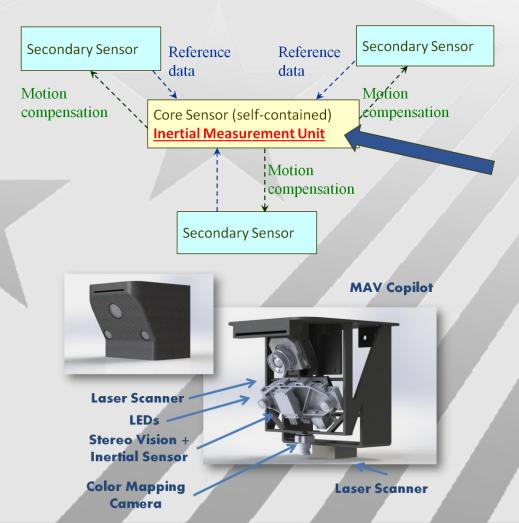
Definition of sewer navigability (equivalent to accessibility for humans)

ARSI MAV

The MAVs developed will be adapted to the requirements of sewer inspections:

- sensors integration for both navigation and inspection
- all electronics and propulsion systems will be tolerant to humidity, by integrating water resistant components and isolating the others by design

Challenge: Miniaturization of the platform


trade-off between payload weight and system performance (i.e. maximum flight time). Example of commercial platforms:

Dimensions	Payload weight	Endurance
540 x 540 mm	200g	20 min
665 x 605 mm	600g	12-14 min
651 x 651 mm	650g	16 min
570 x 570 mm	720g	14 min

Eurecat Navigation Copilot - Background

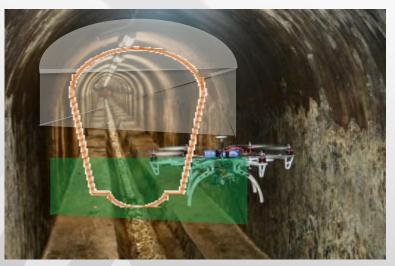
Eurecat will develop a Robust Multi-Sensor Localization algorithms based on a complementary EKF

Eurecat Navigation Copilot - ARSI

Eurecat will develop a Safe Navigation system

Focused on:

- Obstacle detection
- Detect bifurcations
- Fly-by-wire keeping constant distance to the walls



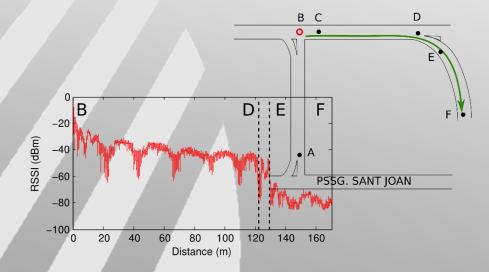
Automatic Inspections

Eurecat will develop a Robust Multi-Sensor Localization algorithms

Focused on:

- Cameras to provide visual inspection
- Synchronized LEDS to solve illumination

Achievements, Impact and Next steps



ARSI main achievements

Specific landing gear

Communications tests

Impact from participation in ECHORD++

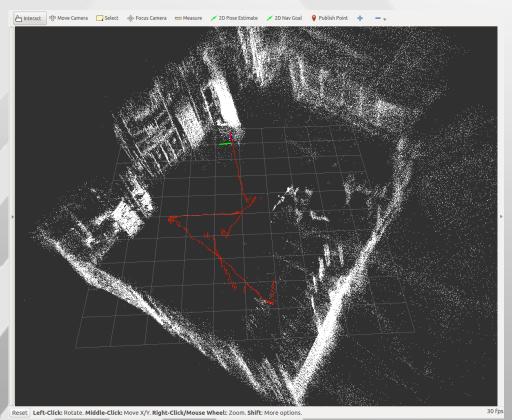
Priority	Target	ARSI contribution	
1	Move People away from hazardous spaces to safe areas by 50%	ARSI solution prevents brigades for accessing unhealthy and risky areas. Additionally, where ARSI solution will be used, this will require brigades of 2 operators, instead of the current 4-members brigades needed for inspection.	
4	Coherent standards for robotic deployments	An operations procedure has been defined for the deployment and user of ARSI solution by a worldwide inspection service company.	
5	Step Change in data and information management	facilitating market uptake of project results. The designer ARSI remote station adapts formats to make it compatib	

Impact from participation in ECHORD++

Inspection cost per meter of sewer serviceability inspection		
(considering 1.000.000 of meters)		
Method	Total cost	Cost per meter
Current inspection methods	712.005,76 €	0.712 €/meter
Inspection using ARSI	476.127.60	0.471 €/meter

This represents an overall cost reduction of 33,8%

	Total cost per 1 brigade	Total cost per 4 brigades
Current Inspection methods	178.001,19€	712.004,76€
Inspection using ARSI	119.031,90€	476.127,60€



Technical progress (1/2)

After a successful design & prototyping phase, the ARSI consortium is now developing the technology which will allow the robot to **fly autonomously** in tunnels.

Extensive sensor datasets were collected during several visits to the sewers in Barcelona, and were used to test and compare various Computer Vision algorithms.

These algorithms allow us to estimate the **robot trajectory in real time** and **produce 3D models** of the sewers tunnels.

trajectory (red) and 3D features (white) in the flight area at Eurecat

Technical progress (2/2)

We are now starting to develop embedded software which uses this local 3D model to **calculate a safe trajectory** for the robot to follow while collecting video data during an inspection in the sewer tunnels.

> trajectory (red) and 3D model in Barcelona sewers

Demonstrator/ prototype

The ARSI team developed a second prototype specifically for the development of the autonomous flight technology. The prototype integrates Pixhawk autopilot, LEDs, an IMU/compass an embedded PC, and a **3D camera** (color+depth), used both for **autonomous flight** and **obstacle avoidance**.

Thank you.

Any questions?

Jesús Pablo González ARSI Project Manager <u>www.eurecat.org</u>