

The European Coordination Hub for Open Robotics Development

3D Smart Sense and Control

Flexible Robotic Solutions

KU Leuven University

Luxemburg / 13.02.2017

Background / motivation

- manual uncoating of cheese blocks (removing thin layer of coating) is very tedious
- robotic automation is very challenging:
 - geometry of cheese blocks varies
 - execution by human is very fast
 - cheese loss has to be minimized
- solutions proposed by others (3D scanning station followed by robotic uncoating station) require unrealistic absolute accuracies
- our solution: 'on-the-fly', i.e. scanning and uncoating in <u>one</u> robot motion
- E++ demonstrator objectives:
 - 1. not more than 30% slower than human
 - 2. less cheese loss (4-5% instead of 5-6%)

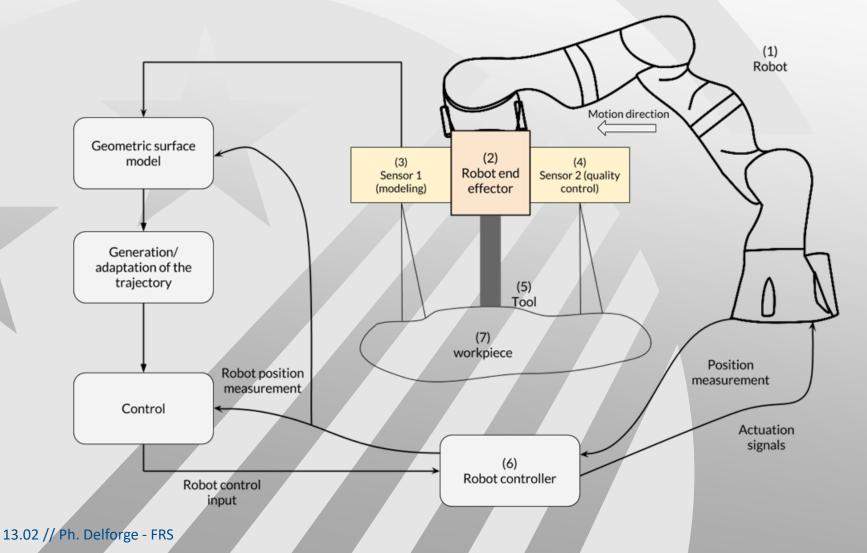
3. use advanced constraint-based task-specification language (*eTaSL*) 13.02 // Ph. Delforge - FRS

Starting point / end point

- 3D surface following based on force <u>feedback</u> → slow!
- 3D laser-based sensing for object <u>localization</u>
- *eTaSL* language for constraintbased task specification

Confid inform for inf use of core conso and re to the

- very fast (> 300 mm/s) and accurate (0.1 mm) surface following using on-the-fly surface modelling and <u>feedforward control</u>
- upgrades of *eTaSL* to enable highperformance application
 - working prototype


3D Smart Sense and Control						
	Increase in TRL of the product/service during the experiment					
	At the start:	At the end:		Expected in the next 2 years:		
	3	5-6		7-8		
	Number of patents generated from the experiment					
	At the end:		Expected in the next 2 years:			
	1		1 or 2			
dential	Number of jobs created (including PhD students)					
mation	During the run-time of the experiment:		Expected in the next 2 years:			
ternal f E++	2		between 5-7			
ortium	Turnover from the experiment (in Euros)					
	At the end:		Expecte	d in the next 2 years:		
eporting e EC*	0		700K to	1,5 Mio,-€/yr		
	Applications in number of other areas					
	At the end:		Planned	in the next 2 years:		
	0		1			
	Other areas: Manufacturing – polishing.					

13.02 // Ph. Delforge - FRS

Demonstrator/ prototype

hardware set-up and algorithmic flow chart diagram

Demonstrator/ prototype

video live demo

Commercialization plan

Work to do before Commercialisation

Development – hardware :

- redesign tool (suction, noise, mechanical robustness, hygiene, color sensor, make sure that all sides of cheese block can be processed, laser line scanner if required)
- further speed up cutting process if possible
- peripheral equipment: turntable or conveyor; equipment to turn over cheese block

Development – software – low-level: finetune and optimize surface estimation and control to further increase speed and accuracy

Development – software – high-level

- rough localization of cheese block using global low-cost 3D vision (RGB-D)
- high-level strategy for each type of cheese block (customization): strategy for upper and lower surface, strategy for side surfaces
- quality monitoring using color sensor^(*) on-line adaptation of cutting depth, local repass to remove rest coating and stamp

Integration: integrate hardware and software (low-level + high-level), automate sensor+tool calibration procedure, comply with hygienic requirements

Validation: experiments with larger batches of different types of cheese blocks

Commercialization plan

Short term business outlook

FRS has promising business outlook with 2 multinational companies. Both required FRS to sign an NDA in order to give FRS access to their cheese processing plants and their product & process information. Consequently, FRS cannot disclose much in the media.

- Cheese Processing: Friesland Campina world top 5
- Cheese Retail: Colruyt Group one of Europe largest food retailers

Medium term extension

Extend business towards the world largest companies:

- Cheese Processing: Nestlé, Danone
- Cheese Retail Mega-Chains: Ahold-Delhaize, Aldi, Auchan, Carrefour, Coop (Switserland), Kroger (US), Sainsburry, Wesfarmers (Australia), ...

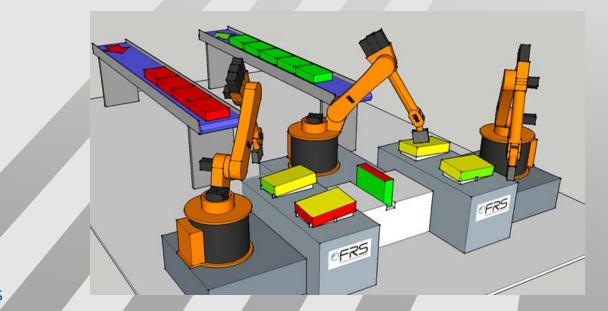
Note that outside Europe, there is less cheese consumption (Asia) and there is a higher percentage of consumed cheese which is grown in foil which has no coating (USA). FRS will seek advice to set-up a business structure for this venture.

Planned disclosure

FRS plans to disclose its technology at Fairs from 2018 onwards (fe. Automatica) A proof-of-concept demo will be shown on the FRS website

13.02 // Ph. Delforge - FRS

Lessons learned


- 1. The application turned out to be very complex and challenging (but we were able to master the complexity and overcome the challenges)
- 2. The obtained accuracy and speed, as obtained using a standard commercial robot, is surprisingly good (but required advanced modelling and control skills); this opens new perspectives for demanding applications involving surface following
- 3. Increasing the TRL and convincing potential customers is (at least!) as big a challenge as setting up the proof-of-concept demo
- 4. Participation to the Hannover Messe 2016 required a big time investment and came too early for us (only non-contact surface following was ± ready at this point), hence was good experience but resulted in little benefit
- 5. Visit to a RIF is not so useful for a company that has all the necessary (industrial) infrastructure and (application-oriented) expertise in-house. It is better to offer this as an opportunity for projects that lack such opportunities (we did not visit a RIF).

Impact from participation in ECHORD++

Impact KPI from Final Report

#	Description	status
1	Direct labour cost saving in comparison to manual work	Achieved
2	Cheese loss reduction	Achieved
3	Selling Price	Achieved
4	Scalability to other manufacturing operations (deburring,	Not Achieved
	grinding, polishing)	

Thank you.

The ECHORD Plus Plus Consortium acknowledges support by the European Commission under FP7 contract 601116.

